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1. Introduction

Although discussions of the role of private incentives have been included in
writings on economics and political economy for more than two hundred
years—at least as far back as Adam Smith’s Wealth of Nations—the formal
treatment of the subject is a recent development in economics. A seminal
paper of the modern era was written in 1972 by Leo Hurwicz, a dozen years
after his pathbreaking work on the foundations of decentralized resource
allocation mechanisms.’ In that paper he introduced the concept of incentive
compatibility and proved that there cannot exist any informationally decen-
tralized mechanism (or procedure) for resource allocation in private goods
economies that simultaneously yields Pareto-efficient allocations and pro-
vides sufficient incentives to consumers to honestly reveal their true pref-
erences.’ Earlier papers (such as Vickrey 1961; Groves 1970; and Clarke
1971) formally discussed mechanisms for making resource allocation deci-
sions in a manner compatible with individual incentives, but Hurwicz was
the first to establish results for a classical, full general equilibrium model
of an exchange economy. His paper was the major stimulus to the large
number of papers that have subsequently appeared. For this reason we begin
this retrospective at that date.

The concept of incentive compatibility, introduced by Hurwicz to capture

We would like to thank Andy Postlewaite, Roy Radner, Stefan Reichelstein, and especially
John Roberts for their many helpful comments and efforts to save us from inaccuracies. Re-
maining efrors are our own.

1See Hurwicz (1960) and Hurwicz (1972). The later paper continues to be an excellent
introduction to the subject of ingentives in resource allocation.

2A precise statement of this theorem is given below in Section 3.1.
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the forces for individual self-interested behavior, has proven to be one of
great scope, serving as an organizing principle of considerable power. Per-
haps the closest analogy in economics is the concept of efficiency. For tie
positivist, notions of self-interested behavior lie at the foundation of all mi-
croeconomic theory. Indeed, the only outcomes that can be generally real-
ized in any situation are those that result from individual decision makers
following their own interests. For the normativist, relatives of the concept
of incentive compatibility may be traced to the “invisible hand” of Adam
Smith, who claimed that in following individual self-interest, the interest of
society might be served. Related issues were a central concem in the “So-
cialist Controvery” which arose over the viability of a socialist society. It
was argued by some that such societies would have to rely on individuals
to follow the rules of the system. Some believed this reliance was naive;
others did not. These debates led to the modern theory of mechanism design
that treats incentive compatibility as a constraint on the choice of procedures
able to be used to make group allocation decisions in various economic in-
stitutional contexts.

In this chapter, we present an organized overview of what is now known
about the possibilities for the incentive compatible design of mechanisms.
We also indicate some of the major remaining mysteries. However, incen-
tive compatibility questions have been addressed for models of central plan-
ning, regulation of monopoly, transfer pricing, and capital budgeting, to
name just a few. Therefore, rather than try to survey the entire recent lit-
erature on the subject (a book-length task), we have chosen, following Hur-
wicz (1972), to concentrate instead on incentives in two well-known clas-
sical general equilibrium models of resource allocation—one being the standard
private goods pure exchange model, the other a simple public and private
goods general equilibrium model. Thus, many papers on incentive compat-
ibility written in the last decade will not be mentioned here. In particular
we ignore the large amount of exciting work concerned with design and
incentive problems in a partial equilibrium framework (see Myerson 1983
for an excellent introduction) and the work on particular institutions in which
information and incentive issues are crucial (see, for example, Milgrom and
Weber 1982, Wilson 1985). Furthermore, even in the narrow area to which
we have constrained ourselves, our survey is undoubtedly incomplete—rather,
it is a personal overview of results comparing private goods economies with

3Special subsets of the general equilibrium environments will be mentioned in subsequent
sections. These include environments restricted to quasi-linear preferences and to zero-one
choices. Since many of the results known to hold in these special cases do not survive in the
more general environments, we most often refer to them as examples only.
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those with public goods. Two surveys from differing points of view but
covering some of the same results are those of Schmeidler (1982b) and Pos-
tlewaite (1985).*

Our decision to concentrate on the differences between and similarities
of the conclusions one may draw concerning incentive compatible design of
resource allocation mechanisms in private and public goods environments
allows us both to summarize a large number of contributions, many of which
address this central issue, and to show how rigorous analyses of incentive
compatibility have deepend and changed the conventional wisdom regarding
the possibility for achieving Pareto-efficient allocations through decentral-
ized means (such as competitive markets). That conventional wisdom before
1972, it is fair to say, could be summarized in two statements:

In classical private goods economies, Pareto-efficiency is consistent with
individual self-interest since price-taking behavior is reasonable in com-
petitive markets, especially if the number of agents is large.

In classical public goods economies, Pareto-efficiency is not consistent
with individual self-interest since agents will have an incentive to “free
ride” on others’ provision of public goods (in order to reduce their own
share of the burden of providing them).

As we show in the sections below, it is now known that these statements
are seriously misleading and obscure some important and subtle distinctions
between private and public goods. For the impatient reader, all of the results
we detail are summarized at the end of each section of this chapter.’ To
whet the appetite, however, we briefly summarize the five main results that
most effectively highlight the differences between private and public goods.
The first three hold for both private and public goods environments.

(1) In classical (private and public goods) economies with a finite number
of agents, there are no nonparametric mechanisms that simultaneously
yield Pareto-efficient allocations and provide individual agents with in-
centives to report their true preferences honestly.

Thus, since agents cannot be induced to behave in an incentive compat-
ible manner, the analysis of resource allocation mechanisms requires some
prediction of agent behavior.

“For some other surveys of the voluminous literature on Incentive Compatible Social Choice,
Implementability of Social Choice Rules, and so forth, see the surveys of Dasgupta, Ham-
mond, and Maskin (1979), Groves (1979), and Laffont and Maskin (1982).

We have delayed summaries to the end since much of the language used must be precisely
defined before it is really understood. These definitions are contained in the body of the chap-
ter.
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(2) In classical (private and public goods) economies with a finite number
of agents, there are nonparametric mechanisms that yield Pareto-effi-
cient allocations when all agents follow their self-interest by playing a
Nash-equilibrium strategy.

Since the pre-1972 conventional wisdom suggests that price-taking be-
havior in private goods economies with many independent agents is in each
agent’s interest, one might look to economies with a continuum of agents
to find a difference between public and private goods.

(3) In classical (private and public goods) economies with a continuum of
agents, there exist mechanisms that simultaneously yield Pareto-efficient
allocations and provide individual agents with incentives to report their
true preferences honestly. (Compare with 1 above.)

In large finite, but growing, economies, we can find a distinction between
private and public goods economies for mechanism design.

(4) In classical private goods economies, there exist mechanisms such that
the Nash-equilibrium strategy yields an “almost” Pareto-efficient allo-
cation as the outcome and is “almost” equivalent to reporting agents’
true preferences, if the economy is “large enough.”

The same result does not appear to hold for public goods economies.

(5) In classical public goods economies, there exist mechanisms such that
the Nash-equilibrium strategy is “almost” equivalent to reporting agents’
true preferences, if the economy is “large enough,” but it seems that
none of these mechanisms simultaneously yields an “almost” Pareto-
efficient allocation, no matter how many (finite number of) agents there
are in the economy.’

We turn now to a survey of the literature that underlies these and many
other facts that have been discovered in the last decade.

2. Resource Allocation Mechanisms in Classical
Economic Environments

To begin our survey, we first introduce a useful model for organizing the
material in this area. This model allows us to standardize notation and to
compare and contrast the results of many researchers within a common
framework. We hope that others, unfamiliar with this area, will also find
this to be helpful.

parts of (5) remain conjecture. This is carefully discussed in Section 5.
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The four primary components of our model are the environment (endow-
ments, preferences, opportunities, etc.), the allocation mechanism (a lan-
guage and an outcome rule), a reduced form description of self-interested
behavior (an example is Nash equilibrium), and a concept of “good” allo-
cations (such as Pareto-efficient, equitable, etc.). The first and the last will
be familiar to economists since these components are from standard general
equilibrium theory. The second and third will be familiar to game theorists
since much of these components comes from standard n-person, noncoop-
erative game theory. The analysis of incentive compatibility requires all four
to be merged into a common framework which we do below.

2.1. Private Goods Model

In the classical model of a private goods economy, there are N consumers
and L goods. Each consumer is endowed with an amount of each good,
denoted by the L dimensional vector, w;. We represent the consumption of
the i" consumer by the L dimensional vector x,. Each consumer has a neo-
classical utility function, u;(x;), which is assumed to be strictly quasi-con-
cave, monotonic, and C* on R5. We assume that the consumer can only
consume bundles x; of commodities with non-negative amounts of each com-
modity. In some cases, we will represent the i™ utility function as u(x;,y;),
where y; is the parameter defining the particular utility function from some
class of functions. In the tradition of Hurwicz (1960), using the language
of mechanism theory, we call ¢; = (y;,w;) the characteristic of consumer {
and we call the full vector, e = (e,,...,ey), the environment.

An allocation in this classical environment is a vector of consumption
bundies, x = (x,,...,xy). Several of these allocations have special signifi-
cance for economists. An allocation is feasible’ for the environment e if and
only if x; = 0 for each i and 2x; = Zw,. An allocation is Pareto-efficient in
the environment e if it is feasible and if there is no other feasible allocation
at which every consumer is at least as well off and at least one is better off.
Formally, x* is Pareto-efficient in e if and only if (i) x* is feasible for ¢ and

"This definition of feasibility is standard and includes both individual feasibility and material
balance. Recently, for mechanism design problems, some authors (e.g., Myerson 1981, 1983)
have suggested that incentive compatibility constraints be included in the definition of fea-
sibility to reflect the fact that certain allocations may not be attained because they require the
transmission of private information, and the holders of that information may have an incentive
to dissemble in transmitting it. Optimality is then defined relative to these informational/
incentival constraints as a “second-best” concept. In this chapter we are interested in the
possibility of designing mechanisms that yield “first-best” (sometimes called ex post optimal)
allocations and, thus, we stay with the standard definitions.
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(ii) if x is feasible for e, then u;(x;) < u;(x*) for at least one i. An allocation,
x, is Walrasian for e (sometimes called a competitive allocation) if (i) x is
feasible and (ii) if there is a vector p in R, a price vector, such that (iia)
px; = pw; and (iib) if w,(x%) > w;(x;), then px¥* > pw,.

The Fundamental Welfare Theorem applies to all environments that we
have called classical (see, for example, Arrow 1951; Debreu 1959). If e
satisfies the assumptions we have made, then two results hold:

If x is Walrasian in e, then x is Pareto-efficient in e.

If x is Pareto-efficient in e, then there exists a redistribution of w such
that for the new environment ¢’, x is Walrasian in e’. (A redistribution
of wis a vector w' = (w,’,...,wy') such that 2w, = Zw,.)

It has been accepted doctrine since the time of Adam Smith (1776) that
private-ownership market institutions are efficient under competitive con-
ditions and that it is in the self-interest of the individuals to behave com-
petitively. Stated another way, in private-ownership economies, even if all
agents aggressively follow their self-interest, the market will lead them to
promote the interests of the whole. The classical welfare theorems stated
above provide one of the two necessary steps for a formal statement and
proof of this conventional wisdom. Interpreting Pareto-efficient as “the in-
terest of the whole,” we know from these theorems that if individuals do
behave competitively, they will serve this interest. The other step is the
demonstration that it is in the self-interest of the consumers to behave com-
petitively. Prior to 1972 most economists believed that fact to be either true
or a good enough approximation in an economy with many consumers.

2.2. Public Goods Model

In a classical model of a public goods economy, there are N consumers, L
private goods, and M public goods. Each consumer is endowed with an
amount of each private good, denoted by the L dimensional vector, w;. We
represent the consumption of the i consumer by the L + M dimensional
vector (x;,z). Each consumer has a neoclassical utility function, u#,(x;,z),
which is assumed to be strictly quasi-concave, monotonic, and C? on
RY*™™_ We assume that the consumer can only consume bundles x; of com-
modities with nonnegative amounts of each commodity. In some cases, we
will represent the i utility function as u(x;,z,y;), where y; is the parameter
defining the particular utility function from some class of functions. We
assume that there is no initial endowment of public goods but that a trans-
formation surface defines the rate at which private goods can be used to
produce public goods. This surface is denoted by T(r,z) = 0, where r is
the vector of private goods inputs. We assume for simplicity that T(.) is
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linear; that is, if T(r,z) = 0, then T(Ar,Az) = O for all A > 0. As above,
we call e; = (y,w;) the characteristic of consumer i and we call the full
vector, e = (e,,...,ey,T(.)), the environment.

An allocation in this classical environment is a vector, (x,z) = (x,,.. XNZ).
As in the case of the private goods economy, several of these allocations
have special significance. An allocation is feasible for the environment e if
and only if (i) x; = O for each i and z = 0, (ii) T(r,z) = 0, and (iii) 3x, —
r = 3w,. An allocation is Pareto-efficient in the environment e if it is feasible
and if there is no other feasible allocation at which every consumer is at
least well off and at least one is better off. Formally, (x*,z*) is Pareto-
efficient in e if and only if (i) (x*,z*) is feasible for ¢ and (i) if (x,2) is
feasible for e, then u,(x;,z) < wu;(x*,2*) for at least one i. An allocation, x,
is Lindahl for e if (i) (x,z) is feasible and (ii) if there is a vector p in R%,
and vectors g;, one for each i, in RY such that (iia) px; + gz = pw, (iib)
if u;(x¥,2*) > ui(x;,z), then px* + qz* > pw¥, and (iic) gz — pr = 0,
where r = 2x; — 3w, and ¢ = 3g,.

The Fundamental Welfare Theorem applies to all public goods environ-
ments that we have called classical (see, for example, Foley 1967). If e
satisfies the assumptions we have made, then two results hold:

If x is Lindahl in e, then x is Pareto-efficient in e.

If x is Pareto-efficient in e, then there exists a redistribution of w such
that for the new environment ¢’, x is Lindahl in ¢’.

It has been received doctrine since Samuelson (1954), that private-own-
ership market institutions are not efficient when there are public goods, since
it is not in the self-interest of individuals to behave competitively. Stated
another way, in private-ownership economies with public goods, if all agents
aggressively follow their own self-interest, decentralized institutions will not
lead them to promote the interests of the whole. Although it was never for-
malized, prior to 1972 most economists believed that in the presence of
public goods, efficient allocations were impossible to attain with decentral-
ized mechanisms if agents behaved in their own self-interest.

2.3. Allocation Mechanisms

An allocation mechanism is an abstraction of the enormous variety of in-
stitutions used to allocate resources, that is, used to choose a specific al-
location given the environment. Many abstract models of allocation systems
have been proposed since the seminal paper of Hurwicz (1960). We use one
in this chapter that we have found to be especially useful. It does not ex-
plicitly model all the possible communication and decision relationships be-
tween every agent in the economy, nor does it explicitly model the se-
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quences and number of iterations necessary to complete the transfer of
information. We therefore refer to this as the normal form of a mechanism.
This description is adequate initially, but we later will discuss its limitations.
An allocation mechanism (in normal form), then, is simply a language and
an outcome rule.

2.3.1 Language

Let M, denote the language (message space) that agent i can use to com-
municate. A few specific examples of the types of messages the language
might contain are a vector of proposed trades (quantity demanded or sup-
plied), a description of i’s characteristics, a list of the amounts i is willing
to spend on each good, a description of i’s cost structure, or a collection of
conditional responses to others’ proposals. Letting M be the product space
M, X ... X My, we call M the language of the allocation process.

2.3.2 Outcome Function

The other part of an allocation mechanism is a function that associates
an allocation with any vector m = (m,,...,my) of messages from the lan-
guage M. We denote this outcome function as h:M — A, where A is the
set of allocations to be chosen among. Many problems arise if 4 is not single
valued. For example, agents may be unable to coordinate actions or a single
agent may be unable to evaluate the consequences of his actions even if he
knows the actions of others. Mechanisms that are not single valued are not
well defined. (An example of such a mechanism, called the Competitive
Mechanism, can be found below following Theorem 3.1.) For almost all of
this chapter, we avoid these problems simply by assuming 4 is a function.
We will point out when this is not assumed.

It is important to note that in order for this description of an outcome
function to make sense, it is necessary to know something about the class
of environments in which the mechanism is operating. In particular, we need
to know the number of agents or consumers and the type of allocations that
will be considered. The space A will look different for private goods econ-
omies than it does for public goods economies. The need for this prior in-
formation is not a handicap, but it is a limitation which should be noted.

Another point to be noted is that this formulation of an allocation mech-
anism is more general than might be apparent. Even though we have not
explicitly modeled any form of iteration, it is possible to include mecha-
nisms of that type in the same way that a normal form game can sometimes
summarize a sequence of moves in an extensive form game. Recognition of
this fact is important for the later discussion of implementation. Models of
allocation mechanisms that explicitly allow for the iterative steps in a com-
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munication process can be found in Hurwicz (1960), Reiter (1974), and
Smith (1979, 1982).

Finally, in some models of mechanisms in the literature, information other
than m appears in the outcome functions. This “extra” information has to
be viewed as common knowledge which is known to the designer of the
system as well as to all the participants prior to the use of the allocation
mechanism. Some examples of this can be found in the Optimal Auction
literature (see, for example, Myerson 1981) where prior beliefs about which
environment is the real one are allowed to be used by the outcome rule.
Another type of “extra” information commonly used in the outcome function
is information about initial endowments, which potentially can be audited
in a way that preferences cannot, in order to ensure feasibility of the out-
comes (see, for example, Postlewaite and Schmeidler 1979). Hurwicz (1972)
has given the name parametric outcome functions to outcome rules that use
other information in addition to agents’ messages. These rules can be mod-
eledas h: EXM— Aoras h: M X I - A, where [ is a space of common
knowledge information about the environment. We will use this formulation
in Section 4.2.

2.4. Self-interested Behavior

In order to address issues such as those raised by Adam Smith and Samu-
elson concerning the performance of various ways of allocating resources in
the face of self-interested behavior, it is necessary to be more precise about
the particular form this behavior takes. Formally, given the allocation mech-
anism h, we summarize behavior as a mapping, b: E — M, where the de-
pendence of b on h is ignored only notationally. To see what is assumed in
any particular b, consider a simple example, leaving others for later. We
define a dominant strategy for agent i, given the class of environments E
and the mechanism h, as a mapping d;: E; — M, such that, for all e to be
considered (all ¢ € E) and all m € M, u(h(m),y) < u(h(m/d;(e))),e;),
where the vector (m/s;) = (my,...,m;_},8;,Mis1,. . .,My).

A fundamental, but generally unstated, axiom of noncooperative behavior
is that if an individual has a dominant strategy available, he will use it.
Under this axiom, if all agents have dominant strategies d;: E; — M, given
h, we can let b(e) = (d\(e)),...,d(ey)) for all ¢ € E. Thus b(.) captures
the behavioral assumption that dominant strategies will be used. Of course
if there are no dominant strategies for some i, the mapping is not well de-
fined and the axiom is not sufficient to describe the behavior of the agents.
In this case, it is necessary to turn to other behavioral assumptions.

When mechanism theory was originally formulated in Hurwicz (1960),
the behavioral rules were more explicit and were viewed as prescriptive. For
example, the rule might be report your marginal cost. It was assumed that
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agents would follow the rules. Here the behavioral rule, b, is viewed as_ a
descriptive phenomenon, since we assume that agents will follow self-in-
terested behavior. The function b will be our model of that behavior.

2.5. Performance and Evaluation

Given a description of the environment, e, of the allocation mechanism, h,
and of the assumed behavior, b, we can summarize the performance of that
mechanism in that environment (or class of environments) under that be-
havior by the mapping P: E — A, where P(e;h,b) = h(b(e)) foralle € E
is the composition of the mechanism’s outcome rule and the behavioral rule.
Graphically this is represented in Figure 2.1 by the commuting diagram of
Reiter (1977).

In using the terminology above, we are ignoring other performance char-
acteristics of allocation mechanisms which are important, such as the in-
formational costs and the computational complexities. We do so in order to
concentrate on the incentive aspects of mechanisms.

Once the performance of the mechanism is known, we can then compare
that performance to some idealization. For example, it has been traditior}al
to ask whether performance is consistent with Pareto-efficiency. In partic-
ular, let S(e) = {allocations in e | allocation is Pareto-efficient in e}. The
question becomes, is P(e) C S(e) for all ¢ € E? If the answer is yes, it is
sometimes said that the mechanism implements the Pareto correspondence,
S. Notice that the use of the Pareto correspondence is only illustrative. Any
correspondence from E to A could be considered. Some “ideal performance
functions” that have been used in the literature are (1) the Pareto-efficient

M

Figure 2.1. Performance rule is the composition of behavior and outcome rules.
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allocations, (2) the individually rational allocations (i.e., those that leave
everyone at least as well off as they were at the initial allocation), (3) the
core allocations, (4) the Walrasian allocations, (5) the Lindahl allocations,
(6) the allocations that yield the Shapley value, and (7) equitable allocations.
We consider some of these in the sections below.

In the past there have been many variations of the basic evaluation ques-
tion stated above. The original issue in the design of allocation mechanisms
(see Hurwicz 1960) was the following: given a class of environments, E,
and a performance criterion, P, is there a mechanism and a behavioral rule
such that the performance of that mechanism under that rule is consistent
with the performance criterion over that class of environments? For the pur-
poses of this chapter it is important to note that not only the rules of the
mechanism but also the behavior of the agents were to be prescribed. Hur-
wicz (1972) raised the incentive issue: suppose we cannot prescribe behavior
but instead, as designers, must take it as given. What then can we do? In
particular, given a class of environments, E, a performance criterion, S, and
assumed behavior, b, does there exist a mechanism, A, such that P(e;h,b)
C S(e) for all e € E? In later work, this continued to be the basic question
that was asked. Sometimes it was extended to ask for a characterization of
all such mechanisms; sometimes additional constraints (such as a minimal
message space) were placed on the search; and sometimes the designer was
allowed to use additional information (such as in the optimal auction liter-

ature). Fundamentally, however, the basic question has remained as in Hur-
wicz (1972).

3. Efficiency and Strong Incentive Compatibility

Partly because of the known and satisfactory efficiency properties of com-
petitive markets and partly because of the inherent acceptability of the con-
cept of Pareto-efficiency as a minimal welfare criteria, much of the literature
on the design and evaluation of allocation mechanisms has adopted the Par-
eto correspondence as a primary ideal with which to compare performance.
In this and the next sections, we survey the state of current knowledge about
the consistency of mechanisms with efficiency under various types of be-
bavior. In fact, one of the main, unfinished debates in this area of research
is over what the appropriate behavioral assumption should be in the analysis
of incentive problems.

As we indicated in Section 2 above, there is wide acceptance of the pre-
sumption that if there exist dominant strategies, then agents will adopt them.
(The only possible violation occurs if agents are able and willing to collude.)
With dominant strategies, then, implementation is not an issue since no agent
need know anything about the others in order to choose a best message given
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the information about the agent’s characteristic, ;. No sophisticated predic-
tion of others’ behavior is necessary. The only problem may be one of in-
formational capacity or complexity of calculation, which we ignore in this
paper even though in experiments in which the dominant strategy is rela-
tively easy to calculate, many subjects still take a few iterations to find the
strategy. (An analysis of such an experiment may be found in Coppinger et
al. 1980 and in Cox et al. 1982.) We summarize in this section what is
known about the efficiency of the performance of resource allocation mech-
anisms under the assumption that agents will employ dominant strategies if
they exist. Later, in Section 4, we will discuss what is known for the cases
when dominant strategies do not exist.

3.1. Dominant Strategies

Although mechanisms for which dominant strategies exist can easily be found,
it is not easy to exhibit them if we also require the performance to be ef-
ficient. It is now known that in classical economic environments with a finite
number of agents: (1) there exist mechanisms that admit dominant strategies
for the agents, but (2) there do not exist (nonparametric) mechanisms that
admit dominant strategies and for which the performance is consistent with
the Pareto correspondence.8 We postpone discussion of the situation in large
economies in which the number of agents is infinite to Section 3.

To explain these results for finite economies, we adopt the following lan-
guage. We call a mechanism h a dominant strategy mechanism on E if for
all e € E and for all i there is a message m,'(e;) such that u(h(m/m/(e)),e)
= u(h(m),e;) for all m € M. That is, the function b(e;) = m;'(e;), for all
e;, is a dominant strategy for i. We will call a mechanism h an efficient
dominant strategy mechanism on E if it is a dominant strategy mechanism
and if P(e;h,b) C S(e) for all e € E, where S(.) is the Pareto correspon-
dence.

3.2. Finite Economies and Dominant Strategy Mechanisms

The fact that there exist dominant strategy mechanisms on classical envi-
ronments is easily shown. Let the set of allocations be the set of net trades.
That is, in private goods environments, let consumption be x; = f; + w; and
A = {t € R™ | 3, = 0}. The trivial allocation mechanism, defined by letting

sAndrew Postlewaite has pointed out that if the mechanism “knows the initial endowments,”
then (2) is not true if parametric mechanisms are allowed. For example, let h(.) be the outcome
function that gives all the endowments to { = 1. If preferences are monotonic, then there are
dominant strategies and the allocation is efficient for this dictatorial procedure. Of course, if
h “does not know the endowments,” then (2) is true.
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M; be any nonempty set and h(m) = O for all m € M, is a dominant strategy
mechanism. We call it trivial since any m; is a dominant strategy. In public
goods environments let A be the set of net trades in both private and pub-
lic goods. That is, let A = {(z,5) € R**¥| 3¢, = 0}. Consumption will be
(t; + w,,s) for each i. If h(m) = O for all m, then h is a dominant strategy
mechanism. Clearly these are not very desirable mechanisms. The only “good”
thing about them is the existence of dominant strategies.

Nontrivial dominant strategy mechanisms do exist, however, if we restrict
further the class of environments to those in which all consumers have quasi-
linear utility functions. Such utility functions satisfy the condition that there
is a private good, 1, say, such that u,(x;) = x;; + vi(x; \ x;) where (x;\ x;;) =
(Xi2». . - ,Xiv), in the private goods only model and u,(x;,y) = xi + vi{x; \ x;,y)
in the public goods model. Utility functions with this property exhibit no
income effect for all goods other than good one; that is, the income elas-
ticities of demand for all goods other than good one are zero. Since mech-
anisms in these environments are extensively covered in the literature (see,
for example, Groves 1979), we only briefly indicate what is known to pro-
vide a background for the results for the wider class of environments con-
sidered in this chapter.

In an amazing paper which foreshadowed not only the work in incentives
but also the work in incomplete information games and auctions, Vickrey
(1961) discovered a particular example of a dominant strategy mechanism
for classical private goods environments with quasi-linear utilities. He de-
scribed his mechanism as follows: “The marketing agency might ask for the
reporting of the individual demand and supply curves on the understanding
that the subsequent transactions are to be determined as follows: The agency
would first aggregate the reported supply and demand curves to determine
the equilibrium marginal value, and apply this value to the individual de-
mand and supply curves to determine the amounts to be supplied and pur-
chased by the various individual buyers and sellers. The amount to be paid
seller §; would, however, somewhat exceed the amount calculated by ap-
plying this marginal value to his amount supplied; in effect for the r™ unit
supplied, S; would be paid an amount equal to the equilibrium price that
would have resulted if S; had restricted his supply to r units, all other pur-
chasers behaving competitively. . . . An exactly symmetrical method could
be simultaneously adopted for dealing with the demand side of the market.”
(Vickrey 1961, 10-12) This mechanism can be summarized easily with the
help of Figure 2.2.

For Vickrey’s mechanism, the messages are the “reported demand or sup-
ply” functions. The outcome rule determines the amounts of the various
goods each should trade, including the “numeraire good” x,, as follows:
Agents report a demand or supply curve to the marketeer. In Figure 2.2,
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Figure 2.2. Vickrey mechanism.

‘the curve EE represents the “reported excess supply” of good j, say, by the

agents other than buyer 1. The curve UU represents the “true marginal ben-
efit” to 1 of an extra unit of good j in terms of the “numeraire good” 1,
since we have restricted attention to quasi-linear preferences. Under the stan-
dard competitive rules for allocating resources, buyer 1 would be charged
the “equilibrium” price for every unit of the good. Thus, EE represents 1’s
average outlay curve. To calculate buyer 1’s best response to the reports of
the others, 1 would calculate MM (1’s marginal outlay curve), look at the
intersection of MM and UU, and then send a “reported” demand function
such that it intersects EE at the same allocation. DD is such a curve. As we
can easily see, 1 has an incentive to understate his demand for the private
good j. This problem does not arise under Vickrey’s rules because, under
these rules, EE is converted into the marginal outlay curve for 1 by charging
1 the area under the curve, EE, for that level of allocation. For example,
the charge for x’ is the crosshatched area. Since EE is now the marginal
outlay curve, 1 wants an allocation, x*, at the intersection of EE and UU.
Obviously if 1 reports the demand curve UU, then 1 will obtain this allo-
cation. Noting that UU is the appropriate response no matter where the EE
curve lies, we see that UU is indeed a dominant strategy.

We can also use Figure 2.2 to describe a dominant strategy mechanism
for the public goods environment. Again, buyers and sellers use, as their
messages, reported demand and supply curves, although in this case these
curves are usually called “willingness-to-pay functions.” Since quasi-linear
utility functions have been assumed, the demand and willingness-to-pay curves
are defined and are the same. (With income effects this would not be true.)
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EE now represents the (vertical) summation of the others’ supply curves.
All else remains as before, and, as before, it is in the interest of buyer 1 to
report the true willingness-to-pay function UU. Groves (1970 and 1973) later
dlsgovered the general class of these mechanisms, and in the public goods
environment the Vickrey mechanism becomes the Demand Revelation
l(\/llgc;l;msm independently discovered by Clarke (1971) and Groves and Loeb

As w.ith the trivial mechanisms, the allocations produced by the Vickrey
mec'hamsm are rarely fully efficient. As Vickrey (1961, 13) observed: “The
basic dr.awback to this scheme is, of course, that the marketing agency will
be required to make payments to suppliers in an amount that exceeds, in
the aggregate, the receipts from purchasers.” Clarke and Groves/Loeb a;lso
noted this but were able to adjust the rules so that a surplus would be gen-
e‘rated each time. In both the private and public goods cases, the “right”
(i.e., Pareto-efficient) level of all nonnumeraire commodities would be cho-
sen. However, not all of the numeraire good would be allocated. Thus the
allocation would not be fully Pareto-efficient.

Although it appears that these Demand Revealing Mechanisms may be
bette'r than the trivial mechanisms, neither satisfies the criterion of Pareto-
Sfﬁgnency. Yickrey (1961, 13), aware of this problem went on to remark:

It is tempt.mg to try to modify this scheme in various ways that would
reduc?, or eliminate this cost of operation while still preserving the tendency
to optimum allocation of resources. However, it seems that all modifications
Fhat do d‘iminish the cost of the scheme either imply the use of some external
mfonpatnon as to the true equilibrium price or reintroduce a direct incentive
for misrepresentation of the marginal-cost or marginal-value curves.” With
the advantage of hindsight, we can rephrase this as follows: there do not
seem to be any mechanisms that do not use specific prior information, that
produce efficient allocations, and that provide the “appropriate” incer;tives
to reveal correct information. In 1972 Hurwicz formalized and proved this
now well-known fact for classical private goods economies. We turn to these
results now.

33. F ir!ite Economies and Efficient Dominant Strategy
Mechanisms

In .his 1972 paper, Hurwicz considered whether informational decentrali-
zation, Pareto-satisfactoriness, and individual incentive compatibility could
be 'combincd simultaneously in one mechanism. Informational decentrali-
zation was formalized as requiring (1) a nonparametric outcome function
and (2) a behavioral rule which depended, for each agent, only on the agent’s
own characteristic. As stated by Hurwicz (1972, 326), “the requirement of
informational decentralization enters through the postulate of ‘privacy,” which
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means that no participant, including an enforcement agency if any, has any
direct knowledge of others’ preferences, endowments, technologies, etc.,
except possibly the restriction to the a priori given classes E,.” Individual
incentive compatibility was conceptualized by Hurwicz (1972, 323) as “no
one should find it profitable to ‘cheat,” where cheating is defined as behavior
that can be made to look ‘legal’ by a misrepresentation of the participant’s
preferences or endowment, with the proviso that fictitious preferences should
be within certain ‘plausible’ limits.” It later became apparent to researchers
in this area that the appropriate formalization of this concept was the re-
quirement that the mechanism be a dominant strategy mechanism. To see
this we consider the following more formal model.

In the Hurwicz model an allocation mechanism is an outcome rule and a
prescription of behavior in the form of specified “response functions,” f(m*;e)
= m, for each i. These rules instruct each agent which message, m;, to send
in response to the “previous” joint message, m*, of all the others. An out-
come is then determined by first looking at “equilibria” of f: that is, a joint
message m is an equilibrium for e if and only if f(m;e)) = m; for all i. Next,
the outcome function g(.) is applied to the equilibrium message m to yield
the final allocation: that is, the outcome is g(m) where m is an equilibrium
for e. Let c(e;f) be the equilibria for e under the response rules, f. Then
the result of the mechanism, if all follow the rules, are the allocations a =
g(c(e;f)). If all agents act as if their characteristics are e}, then the outcome
is g(c(e*;f) = a*. If we let M = E and h(m) = g(c(e;f)), then h is an
allocation mechanism (as defined above in Section 2) that yields the same
allocations as the Hurwicz formulation. In this form, with characteristics as
messages, these mechanisms are called Direct Revelation Mechanisms.’

We can now formalize the original Hurwicz concept of individual incen-
tive compatibility as follows: the mechanism given by (f,g) is individually
incentive compatible for the class of environments E if and only if, for all
i and all e and all e* € E,, u(h(e),e) = u(h(e/e),e), where h(e) = g(cle:f)
for all ¢ € E. This requires that ¢; be a dominant strategy for i when e, is
’s characteristic. As it stands this does not seem to require that & be a
dominant strategy mechanism, but it was soon noticed that (f,g) is individ-
ually incentive compatible for E if and only if h is a dominant strategy
mechanism for E. It was a short step from this observation to the recognition

9Some authors have used the term Direct Revelation Mechanism to refer to mechanisms for
which messages are characteristic and where reporting the true e, is a dominant strategy. We
believe that the form of the mechanism (Direct Revelation) should be kept separate from its
incentive properties and, therefore, that if reporting e; is a dominant strategy, then (h,E) is
an Incentive Compatible Direct Revelation Mechanism.
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that if h': M — A is a dominant strategy mechanism for E, then there is a
direct revelation version of 4’ which is also a dominant strategy mechanism.
This insight, of Gibbard’s (1973), has been codified as the Revelation Prin-
ciple (see Harris and Raviv 1979; Myerson 1979) and is straightforward to
prove. For some possible drawbacks see Postlewaite and Schmeidler (1986)
and Repullo (1983). Putting these results together we see that there is an
individually incentive compatible mechanism for E if and only if there is a
corresponding dominant strategy mechanism for £E. With these formaliza-
tions, we can now turn to the key result.

THEOREM 3.1 (Hurwicz 1972). If E is the classical private goods envi-
ronments with at least two agents, there is no efficient, dominant strat-
egy, nonparametric mechanism such that u(h(b(e),e;) = u(w,e,) for
all i and for all ¢ € E.

PROOF. See Hurwicz (1972).

The last condition in the theorem, which has come to be called individual
rationality, requires that the mechanism allow each participant a no-trade
option. One particularly interesting example of a mechanism satisfying this
condition is the Competitive Mechanism, which can be defined as a direct
revelation mechanism as follows. (There are other possible representations,
but this is the easiest one with which to work.) The message of any agent
i is that agent’s characteristic, and the outcome function picks net trades.
Thus, h: M — A is defined as: Given a characteristic e, let D(p,e) =
{x ER | u(x’ + w,e) > u(x + wye) > px' > px = pw} be the demand
correspondence for agent i with characteristic e; where p € R%, the space
of all prices p. Let C(e) = {p € R, | ED(p,e;) = O} denote the set of
competitive equilibrium prices for the environment e. Then, A assigns the
net trade D(C(e),e;) to the agent with the reported characteristic ¢;. Now,
since the competitive mechanism is also efficient, by Hurwicz’s theorem it
cannot be a dominant strategy mechanism; that is, it is not individually in-
centive compatible in the sense that all agents have an incentive to correctly
report their true characteristics.

This theorem of Hurwicz (1972) thus provided a formal proof of the Vick-
rey hunch and, simultaneously, established that a search to find an efficient
dominant strategy mechanism, which was also individually rational, was
doomed to failure. Left undecided was whether removal of the requirement
of individual rationality would allow discovery of an efficient, dominant
strategy mechanism. Theorem 3.4 below resolves this question negatively.
Also left open was the subset of E for which incentives and efficiency were
infcompatible. This was partially answered in Ledyard (1977) as “almost all
of E.”

Even though the Hurwicz impossibility theorem established that the con-
ventional wisdom for classical private goods environments was incorrect if

INCENTIVE COMPATIBILITY 65

there existed a finite number of agents, few were surprised to find that his
result was also valid for classical public goods environments. In Ledyard
and Roberts (1974), a diagram used by Malinvaud (1971), who attributed
it to Kolm, was adopted and with a modification of the Hurwicz proof the
following theorem was shown.

THEOREM 3.2 (Ledyard and Roberts 1974). If E is the set of classical
public goods environments with at least two agents, there is no effi-
cient, dominant strategy, nonparametric mechanism such that
u(h(b(e)),e) = u(w;,0,¢) for all i and for all e € E.

PROOF. We have included a proof of this theorem in the appendix to this
section since the Ledyard and Roberts (1974) paper is relatively inaccessi-
ble.

Again this left open the question of the existence of an efficient, dominant
strategy mechanism if individual rationality were not required, but this gap
was soon filled. Hurwicz (1975) showed that when the number of agents is
at least three, there is no mechanism with a “smooth” outcome function h
that both is efficient and admits a dominant strategy.

A somewhat indirect, but, in the end, more wide-ranging theorem was
obtained in a sequence of papers dealing with the class of Groves mecha-
nisms described earlier. First, Green and Laffont (1977) established that if
utilities are restricted to be quasi-linear but allowed to be nonconcave, then
the only dominant strategy mechanisms that choose an efficient level of the
public good are Groves mechanisms. Walker (1978) demonstrated that even
if utilities are restricted to the class of concave, quasi-linear functions, this
characterization remains valid. Finally, Green and Laffont (1978) and Walker
(1980) showed that there is no Groves mechanism which “balances the trans-
fers” over the whole class E’, the subset of classical public goods environ-
ments with quasi-linear utility functions. (A mechanism is said to “balance
the transfers” if the final allocations produced by the mechanism satisfy the
balance condition 2x; + r = Zw;,.) Since balanced transfers are a necessary
condition for efficiency, this collection of papers (see also Holmstrom 1979,
Makowski and Ostroy 1984b) established the following theorem.

THEOREM 3.3. If E is the space of classical public goods environments
with at least two agents, there is no efficient, dominant strategy, non-
parametric mechanism.

PROOF. Follows from Green and Laffont (1977, 1978), Walker (1980),

and Holmstrom (1979).

Finally, a unifying result has been established by Hurwicz and Walker
(1983) for all classical economies, both private and public. In fact, they
went even further and proved that the failure of existence of efficient dom-
inant strategy mechanisms is “generic” on a large set of classical economies
with quasi-linear preferences and more than two agents.
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3.4. Summary

Combining all the results in the previous sections, we find it relatively easy
to summarize the state of knowledge concerning efficient, incentive com-
patible mechanisms in Theorem 3.4.

THEOREM 3.4. In classical environments, both private and public, with a
finite set of agents greater than one, there exist nonparametric, dom-
inant strategy mechanisms but, there do not exist nonparametric, ef-
ficient, dominant strategy mechanisms.

The net effect of the research in this area has been to verify Hurwicz’s
conjecture (which we first heard in 1967) that informational decentralization,
welfare maximization, and incentive compatibility are unattainable simul-
taneously.

Appendix: Proof of Theorem 3.2
Following is a slightly modified version of the proof in Ledyard and Roberts
(1974).

The economy we construct has two identical consumers, one private good,
x, and one public good, z, that can be produced from the private good under
constant returns to scale. By a choice of units, the transformation of private
into public good is one-for-one, that is, the production relation g(*) is given
by z = g(x) = x. Each consumer holds one unit of private good and has
preferences that are given by the indifference map in Figure 2.3. For z <
x, the indifference curves have slope of —1, whereas for z > x, the slopes
are —3.

It is convenient to represent this economy graphically (Figure 2.4) by
means of an analogue of the Edgeworth box diagram. This construction was

Quantity
of Public
) \

Quantity of Private Good X

Figure 2.3. Consumer preferences for public and private goods.
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B C

Figure 2.4. Kolm triangle showing efficient allocations with one public and one private
good.

used by Malinvaud (1971), who attributed it to Kolm. The equilateral tri-
angle in Figure 2.4 has height 2. Since the sum of the distances from any
point in the triangle to the three sides is a constant, and since a feasible
allocation (x;,X;,2) in this economy satisfies x, + x, + 2 =2 = wi T Wy,
a one-to-one correspondence exists between points in the triangle and the
feasible allocations: using the point B as the origin for the first agent and C
as that for the second, we see that point § corresponds to an allocation where
2 is the distance from S to BC, x; is the distance from S to AB, and x; is
the distance from S to AC. The initial position (1 ,1,0) is then the point W
on BC. Sample indifference curves for the two agents are shown. Pareto
optima correspond to «“double tangencies,” and thus the Pareto optima are
the points along DEF.

The points on PEQ are the Pareto optima in this economy that are pre-
ferred or indifferent for each agent to the initial allocation, W. We refer to
the set of Pareto optima that are individually rational as the contract curve.

Any mechanism that selects allocations on the contract curve must select
some point on PEQ if the agents reveal their true preferences. Suppose that
outcome were on the segment PE. Then, if the second consumer reveals his
true preferences, the first agent will be better off if she can, by misrepre-
senting her preferences, shift the apparent contract curve into the region to
the right of JEK.

Clearly the agent can do this. For example, she can use the strategy that
can be rationalized as being the true response of an agent with preferences
given by straight line indifference curves with slope —3. This is illustrated
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8 c

Figure 2.5. Example demonstrating that agent 1 can benefit by distorting reported pref-
erences.

in Figure 2.5, where the apparent contract curve is now GT. Since the final
allocation must be on GT, it is not individually incentive compatible for the
first agent to reveal her true preferences (i.e., the strategies of telling the
truth, m¥, do not constitute a Nash equilibrium). This resuilt is, of course
what one would have expected: it ought not to be any easier to obtain in:

ceqtive gompatibility with public goods than in their absence—the case ex-
amined in Hurwicz (1972).

4. Efficiency Without Dominant Strategies

In this s;ction, we retain the requirement that the mechanism’s performance
be.conSIStent with the Pareto correspondence. But we must give up the re-
quirement that there exist dominant strategies. This immediately opens up
the question of which of the many other equilibrium concepts should be used
as a behavioral rule. This is really an empirical question since, in designing
a mef:h?nism h, we must predict how a group of N individuals with char-
agtenstlcs e, i =1, ..., N, will behave when confronted with the mecha-
nism. Which (equilibrium) message will result when & is implemented?'®

“In the. incentive literature the word implement has come to mean that it is possible to match
some desired perf?rmance rule, P: E— A, with a mechanism h: M — A under some behavior
b: E — M. That is, h is said to b-implement P on E if h[b(e)] C P(e) for all e € E. When

we speak of fmplementing a mechanism, we mean actually using the mechanism to determine
some allocation.
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To answer this question we need to know more about the mechanism than
its normal form. We need to know, for example, how many iterations of
information transmission are allowed. What is the stopping rule? Is com-
munication through a central “computer,” is contact random, or must we
search out information? As those familiar with experiments will point out,
the outcome function alone is insufficient to describe an institution as it
might be actually implemented.

Two extreme examples will illustrate this point. One conceivable imple-
mentation of a mechanism, h: M — A, is as a sealed bid auction, a one-
iteration process. Under this implementation, each agent is required to send
m; without knowledge of the others’ messages. Upon receipt of all m;, the
“auctioneer” announces the allocation, h(m). A second possible implemen-
tation of the same mechanism, h, is as an iterative procedure with an en-
dogenously determined number of iterations. In this implementation, each
agent sends m; without knowledge of the others’ messages. If, for every i,
m; exactly matches the previous m;, the process stops and the “auctioneer”
announces h(m). If, for at least one i, m; is different from i’s previous mes-
sage, then another iteration occurs. Obviously we can also conceive of in-
numerable other implementations where the stopping rule for the iterative
procedure is to stop after T iterations unless all m; match the previous mes-
sages at some prior iteration. (See Smitn 1977, 1979, and 1982 for some
examples and a discussion.) Although each of these extensive forms of the
mechanism, h, may be represented by the same normal form, it seems un-
likely that agents’ behavior will be the same under each form. That is, even
if ¢ were the same, we would expect the final allocation to be different for
a one-iteration process than for an endogenous iteration process.

Although it is an unsettled empirical issue how agents will behave in each
case, we can still point to several models that are adequate as first attempts
to explore the issue. We suggest that the “model” best suited to analyze the
one-iteration implementation is the one common in modeling auctions—the
incomplete information-game model with common knowledge and a Nash
(Bayes) equilibrium as the behavior rule. This model has the additional ad-
vantage of being normatively pleasing in that (Bayesian) agents should play
this way (see Myerson 1983). For the endogenous iteration model, the nat-
ural normative choice of behavior (how the agents should behave) would be
a Nash (Bayes) equilibrium of the repeated, incomplete information game
with the number of stages endogenous. Characterization of these games re-
mains an unsolved problem and thus, in place of that natural choice, we
turn to the Nash equilibrium of the “complete information” game. We do
not suggest that each agent knows all of e when he computes m;, just as in
real markets no auctioneer knows the excess demand function when equi-
librium prices are calculated. We do suggest, however, that the complete
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information Nash game-theoretic equilibrium messages may be the possible
equilibrium of the iterative process—that is, the stationary messages—just
as the demand-equal-supply price is thought of as the equilibrium of some
unspecified market dynamic process. We have misgivings with each of these
models as representations of actual behavior, although there is some evi-
dence that each may be reasonably accurate (Smith 1979 discusses some
experimental evidence).

4.1. Nonparametric Mechanisms

Nonparametric mechanisms are those for which the message space M is the
same for all environments e € E and the outcome function, h: M — A, is
a function of the joint message m only; that is, those in which the designer
cannot incorporate any information other than that received from the agents
(see Hurwicz 1972, 310). A nonparametric mechanism is said to be efficient
on E under the behavior, b, if P(e) = h(b(e;h)) is Pareto-efficient in e for
all e € E. In this section we explore the existence and the characterization
of nonparametric mechanisms that are efficient on classical environments
under various types of behavior.

4.1.1. Bayes Equilibrium

As indicated above, if a mechanism is implemented as a one-iteration
sealed-bid auction, a rea_sonable candidate for the description of behavior is
Bayes-equilibrium behavior based on some common knowledge prior be-
liefs. A precise formulation of this behavioral postulate follows.

Given the class of classical environments E, consider a given nonpara-
metric mechanism 4. The Bayesian behavioral rule is specified by first as-
suming that each agent has a prior density on E, say g{e). The vector of
priors ¢ = (q,,...qy) is assumed to be common knowledge. Letting d;:E;, —
M; denote a decision rule for i, the vector of decision rules d = (d,,...,dy)
is called a Bayes-equilibrium if and only if, for each i and for each ¢, € E,,

f u(d(e);e)qle | e)de._; = f u(d(e)/m;e)qie | e)deforallm € M,,
E. Eo

where E_; = II,.E;. The result, based on the Revelation Principle, is that if
d is a Bayes equilibrium for the mechanism h, then another direct revelation
mechanism, F: M — A, can be defined where M; = E; for each i and F(e)
= h(d(e)) such that the identity map I(e) = e is then a Bayes equilibrium
for the mechanism F. Thus, if it is possible to find an efficient nonpara-
metric mechanism under Bayes-equilibrium behavior, then it must be pos-
sible to find a direct revelation, efficient nonparametric mechanism under
Bayes-equilibrium behavior.
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We can now ask whether there are efficient, nonparametric mechanisms
for classical environments under the Bayes-equilibriumn behavioral assump-
tion. The answer is basically no as can be seen from the following theorem.

THEOREM 4.1 (Ledyard 1978, 1979). Given any vector of priors g, the

direct revelation mechanism h has the identity map, I: £ — E, as a
Bayes equilibrium if and only if 4 is a dominant strategy mechanism
in e for almost every e € E with respect to q.

PROOF. See Ledyard (1978).

Thus, if & were an efficient nonparametric mechanism on E under Bayes
behavior, there would be an efficient direct revelation mechanism, F, with
the identity map /(.) as a Bayes equilibrium. This in turn implies that F is
an efficient dominant strategy mechanism for almost all of E. But by the
results of Section 3, this is impossible for classical environments. Therefore,
there can be no efficient, nonparametric mechanisms for classical environ-
ments under Bayes-equilibrium behavior. The agents’ use of the additional
information on the prior distribution, ¢, does not help. Two facts should
help in understanding this result. Requiring h(d(e)) to be efficient for all e
(a form of ex post efficiency) is much stronger than requiring ex ante ef-
ficiency in expected utility, as is usually done in the optimal auction liter-
ature. Also, in this theorem h is not allowed to depend on ¢ as is customarily
the case in that literature. (We analyze that case later in Section 4.2.) There-
fore, the impossibility result should not be too surprising.

To summarize, we state:

THEOREM 4.2. In classical environments with a finite set of agents, there

are no efficient, Bayes-equilibrium, nonparametric mechanisms.

PROOF. Follows from the theorems of Section 3 and Theorem 4.1.

4.1.2. Nash Equilibrium

Having not had much luck with one-iteration implementations of mech-
anisms, we consider next an idealization of the behavior expected in an
infinite-iteration implementation of a mechanism. Given a mechanism de-
fined by the language E and outcome function /k, we define the Nash be-
havioral rule b": E — M as follows: For all ¢ € E, and all i

u(h(b¥(e));e) = u(h(b”(e)/m);e;) for allm, € M.

As with Bayes equilibria, there can be a problem of too many equilibria;
however, this will not be an issue in our analysis.

Now we can ask the main question: Are there any efficient, nonpara-
metric mechanisms on classical environments under Nash behavior? The an-
swer is yes. In addition, there are several results that characterize a wide
class of such mechanisms. First we discuss five specific mechanisms; then
we turn to the characterizations.
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!n' the face of the pessimism expressed in the literature in the search for
efficient, incentive-sensitive mechanisms in the early seventies, we were
somgwhat sgrprised to discover a mechanism to allocate public goods in
classical environments whose Nash equilibria were Pareto-efficient (Groves
and Ledyard 1977). Soon many more such mechanisms were found.

Private Goods Environments. Many of the mechanisms discovered to date
that are.e.fﬁcient under Nash behavior (in private goods environments) have
the adfiltlonal property that they select Walrasian allocations. Much of the
work' in this area has been summarized by Schmeidler (1982b), who also
provided Qne of the first examples (Schmeidler 1980) of a mechanism whose
Nash-equilibrium allocations are Walrasian in classical environments and
are, therefore, efficient. A slightly later version has the additional desirable
property that its Nash equilibria are also strong Nash equilibria. This mech-
anism is described as follows. The message space is given by

M,-={(p't)€Ri+ xR"lp-t=Oand2pi= l}andM=HMf~

:he outcome rule, h = (hy,...,hy), is then defined for each m = (m,,...,my)
y

T;=1{k| p = p}and h(m) =1, - > " forall i.
kET; i

THEOREM 4.3 (Schmeidler 1980). In classical environments with initial
epdowments, w;, that are positive in each coordinate, with utility func-
tions that have continuous partial derivatives, and with at least three
agents, N = 3, (i) every Nash equilibrium is a strong equilibrium and
(ii) the set of Nash-equilibrium allocations is the set of Walrasian al-
locations.

PROOF. See Schmeidler (1980).

One problem with the Schmeidler mechanism, however, is that the out-
come 'rule is not continuous. Thus small variations in messages can cause
!argc Jjumps in the allocation. If only Nash equilibria were assumed to be
implemented, this would not cause difficulties; however, as we indicated
above, Nash equilibria are plausible as a model of the probable outcomes
only if a number of iterations occur. Since we would expect to see terminal
messages close (but not necessarily equal) to Nash equilibria, any discon-
tinuity in the outcome rule, especially near Nash equilibria, means it is dif-
ficult to approximate the eventual outcome, even though the messages were
glmost “right.” If the outcome rule were continuous, we would know that
if the messages are close to Nash equilibria, then the allocations will be
close to Nash-equilibrium allocations. Because of the fallibility of infor-
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mation transmission, it is highly desirable to have outcome functions that
are continuous.

Hurwicz (1979a) has exhibited an allocation mechanism with the desired
features. Let the message space be given by: M, = {(p,H) € R XR' x
R' | p > 0}. The outcome function is then defined by: h(m) =
(hy(m),. . .,hy(m)) where h(m) = (r(m),s(m)) and s(m) = t; — 1;, where
;= {Zet}/WN — 1), and r(m) = —p_is{m) — L(m) + S{m), where p_,
= (Sup}/(N = 1), Lim) = (p, — p-), and S(m) = p_t_, + pi +
{Ej#ipzj}/(N -1- {Ej#t(zpj - tj)zk#i.jpk}/(N - DN = 2).

THEOREM 4.4 (Hurwicz 1979a). In classical private goods environments
such that all consumers’ preferences are strictly increasing in good 1
and with at least three agents, N = 3, the set of Nash-equilibria al-
locations is equal to the set of Walrasian-equilibrium allocations.

PROOF. See Hurwicz (1979a).

Several remarks about the above two mechanisms are in order. First, each
requires at least three traders. Hurwicz (1976), however, did define an ef-
ficient Nash mechanism for environments with only two traders. The out-
come rule for that mechanism, however, is not balanced (i.e., the outcome
function does not satisfy the condition Zh(m) = 0), nor is it individually
rational (see also Reichelstein 1984a). Second, the dimension of the message
space used in the above mechanisms is 2N(L. — 1). It is known that the
minimal dimension needed to obtain Walrasian allocations under prescribed
behavior is N(L — 1) (see, for example, Mount and Reiter 1974). Thus, an
open question of interest is whether it possible to design a Nash-efficient
mechanism with the dimension of M being N(L — 1).

Finally, neither of the above mechanisms is feasible in all environments,
e, at all messages, m, in the sense that h(m) may not be a feasible allocation
for some message, environment pair (m,e). But, as we will see shortly, no
mechanism exists that is balanced, nonparametric, feasible, and nontrivial
(in other words, that has a nonzero outcome for some m).

Public Goods Environments. There are at least three specific mechanisms
that are designed to allocate public goods in classical environments. The
first, by Groves and Ledyard (1977), is defined as follows. The message
space is M; = R" for all i and M = II, M;. The allocation rule is h =
(hy(m),. . ., hy(m),y(m)), where y(m) is the chosen level of public goods and
h{(m) is the amount of the numeraire good to be transferred to i.

yom) = X m,

h()—i()ﬂ{—ﬁ—( — po) - o )}
im"Nym 2 N—lmi P o(m-;
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where y > 0 is an arbitrary constant, p., = 1/N—-1) Z;,m;, and o(m.;) =
1/(N-2) zj;fi(mj - By 2
THEOREM 4.5 (Groves and Leyard 1977). In classical public goods en-
vironments with at least three agents, the mechanism defined above is
an efficient Nash mechanism.

PROOF. (1) Zh(m) = y(m) for all m and thus the mechanism is balanced.
(2) At Nash equilibria, (u,/u,) — {(1/N) + N/(N=1)m; — p_)} = 0.
Summing over all i implies 2(u,,/u;) — 1 = 0, the Samuleson-Lindahl nec-
essary conditions for efficiency. QED

In an interesting article, Bergstrom, Simon, and Titus (1983) show that
this mechanism will have a large number of Nash-equilibrium messages, on
the order of 2¥~'. Each will yield an efficient allocation but, as they point
out, multiple equilibria may create problems for our justification of Nash
behavior. In particular, Bergstrom et al. (1983, 167) state that “if there are
multiple equilibria with differing distributions of utility, then individuals may
have an incentive to falsify their preferences in order to drive the adjustment
process to a preferred equilibrium.” As we discuss below, in Section 4.1.3,
there is no commonly accepted model of self-interested individual behavior
of an agent confronted with an adjustment process. Until there is such a
model, the implementability of this mechanism remains an open question.

Another property of this mechanism is that Nash-equilibrium allocations
may leave a consumer worse off than at the initial endowment; that is, there
may be consumers who would be better off not participating. In a mecha-
nism by Hurwicz (1979a) this is avoided. His mechanism has the message
space M, = {(y;,p;)) € R® x R.} and M = I1,M,. The allocation rule is

h(m) = (hy(m),...,hy(m), y(m)) where
y(m)y = (1/N)D, y; and

h{my= —=|(1/N) + piy — pir)|y(m) — py; — Vel = Pisi(Yirr = Yis2)
where N+ 1=1and N +2=2.

THEOREM 4.6 (Hurwicz 1979a). In classical public goods environments
with utility functions that are strictly increasing in the numeraire good
and with at least three agents, the set of Nash-equilibrium allocations
of the above mechanism are equivalent to the Lindahl allocations.
Therefore it is an efficient Nash mechanism with individually rational
allocations.

PROOF. (1) At Nash equilibria p(y; — y,+,) = 0 for all i. Therefore, (2)
h{m) = r{m)y(m) where r(m) = (1/N) + p.,, — pi+2. Also, 3) (uy/uy) —
ri — 2p{y; — yis1) = O for all i. And, from (1), (4) (uy/u,) = ri.. QED

An unfortunate property of this mechanism is its large message space. M
is a 2NM dimensional space whereas the quadratic mechanism of Groves-
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Ledyard uses only an NM dimensional space for M. However, Walker (1981)
discovered another mechanism which selects Lindahl allocations and which
uses a smaller space for messages than does the mechanism of Hurwicz. Let
M, = R and let M = IIM,. Let y(m) = Em; and let h(m) = [(1/N) + m;,,
— m;_,]y(m) for each i.

THEOREM 4.7 (Walker 1981). In classical public goods environments with
utility functions that are monotonic in the numeraire good and with at
least three agents, the set of Nash-equilibrium allocations is equivalent
to the set of Lindahl allocations.

pROOE. (1) y(m) = Zh(m), or balancedness, for all m. (2) At a Nash
equilibrium, h(m) = r(m)y(m) where r{m) = (1/N) + my,, — mi_,. (3) At
a Nash equilibrium, (u,/u;) — r{m) = 0. QED

To this point we know that, for classical environments, there exist con-
tinuous, balanced, non;iarametric, individually rational, Nash-efficient mech-
anisms. There are also other mechanisms satisfying some, but not all, of
these conditions. Unfortunately, although the equilibrium allocations are in-
dividually feasible, none of the above specific mechanisms are necessarily
individually feasible at nonequilibrium messages. We say unfortunately for
the same reason that we desired continuous outcome rules—in case of small
errors in communication, implementation may require that nonequilibrium
messages be used to compute the allocation. If this happens, it is very de-
sirable to know that whatever allocation is chosen, it will be feasible for all
agents. The next theorem sharpens some of the limits of mechanism design.

THEOREM 4.8 (Hurwicz, Maskin, and Postlewaite 1982). If a nonpara-
metric outcome function is an efficient Nash mechanism and is indi-
vidually feasible, then the message space for i must depend on w;, i’s
initial endowment.

PROOF. Suppose A is an efficient, individually feasible Nash mechanism.
Suppose for e it allocates h(b"(e)) # 0. This will be true if w is not Pareto-
efficient. Let 1 = b"(e;h). There is an i and a k such that hy(?) = a < 0.
Consider the environment e’ which is derived from e by lowering w; to ¢
where 0 < ¢ < —a. Then h is not individually feasible in ¢’. QED

Allowing M, to depend on w; is formally equivalent to parameterizing the
outcome function by w;. Therefore, nonparametric mechanisms, i.e., those
with nonparametric outcome functions and nonparametric message spaces,
cannot be both individually feasible and Nash-efficient. This result is ac-
tually deeper: nontrivial, nonparametric mechanisms cannot be individually
feasible.

To summarize the results in this section, we first recap some terminology.
A mechanism is continuous if the outcome function h: E — A is continuous
in an appropriate topology. A mechanism is balanced when allocating pri-
vate goods if Sh(m) = O for all m and balanced when allocating public
goods if T[Zh,(m), h(m)] =0 where h;,(m) is the net addition to (or re-
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duction in) i’s endowment of private goods in the allocation h(m) and h,(m)
is the public goods allocation. A mechanism is individually feasible if h;,(m)
= —w, for all i and m and e. A mechanism is nonparametric if it is inde-
pendent of e. A mechanism is Nash-efficient on E if h(b"(e;h)) are Pareto-
efficient allocations for all e € E.
We have learned the following theorem.
THEOREM 4.9. In classical environments with at least two agents,
(a) there exist continuous, balanced, nonparametric, efficient Nash
mechanisms,
(b) there do not exist (even with two agents) individually feasible,
efficient Nash mechanisms.

All five specific mechanisms displayed above have desirable as well as
undesirable properties. We touched on message size but did not discuss com-
plexity, stability, and coalitional manipulability, to name just a few issues.
Before effort is spent on further analysis of these five mechanisms, we would
like to know how many others there are. That is, we would like to char-
acterize the class of all efficient Nash mechanisms on classical environ-
ments. Although there have been several interesting papers written in this
area, the characterizations remain incomplete.

In an interesting exposition of the Groves-Ledyard quadratic mechanism,
Brock (1980) presents a method of generating an enormous class of efficient
Nash mechanisms for public goods environments. His systematic approach
also highlights what is needed to design such mechanisms. In particular,
suppose the message spaces M; and functions y = y(m) and T(m) = T; for
all i must satisfy (as is required for efficiency) balancedness (i.e., (1)
Z.T(m) = qy(m) for all m) and be such that Nash-equilibrium allocations are
efficient; that is, if w(y,w; — T)Xdy/dm) — w,(y,w; — T)NdT,/dm)) = 0
for all i, then the Samuelson-Lindahl condition, Z,{u;,/u;,] = ¢, must hold.
It is easy to see that this condition is satisfied if and only if (2) £(dT;/dm,)/
(dy/dmj] = q for all m. Now, as Brock (1980) showed, equations (1) and
(2) can be used to generate innumerable efficient, Nash mechanisms. For
example, let M; = R* and let y(m) = Z;m,. Then the functions, T(m), must
satisfy Z,T(m) = qZm; and ZdT,/dm; = q for all m and i. Suppose we try
a series of polynomials for T,. First consider T; = a; + bm. It is required
that 2a; + Zbm = qZm;. Therefore, Za; = 0 and Z;bym; = qZm;, for all
m. The latter is possible if and only if b; = b, for all i and 2Zb; = q. If we
were to require symmetry in the mechanism, then g; = O for all i and b, =
(1/N)q for each i. Therefore, taxes for all agents are equal, that is, T(m)
= (1/N)qZm;. It is easy to see that this mechanism satisfies the require-
ments: its Nash-equilibria allocations are Pareto-efficient. The difficulty with
this particularly simple mechanism of equal taxation is that Nash equilibria
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under the mechanism rarely exist. As in Hammond (1979), equilibria for
this mechanism will exist if and only if there are fair Lindahl equilibria, that
is, Lindahl equilibria such that all i have the same marginal rate of substi-
tution. In most classical environments, such Lindahl equilibria simply do
not exist. (Note: If the message spaces M; are compact, then Nash equilibria
may exist but will almost always be boundary points; that is, most m; will
be at the lower bound and only one agent i will effectively determine the
allocation which will then not be Pareto-efficient since the Samuelson-Lin-
dahl condition will not hold.)

Because of the existence problem with linear functions T}, let us consider
quadratic ones instead; that is, suppose 7; = a; + b; + m'C'm for all m and
i. Now, for symmetric functions 7; it must be true that 2a;, = 0, b; = b;,
b; = (1/N)q and m'(SC*m = 0 for all m to ensure balancedness. To ensure
the Samuelson-Lindahl condition, we also need 2b; + 22.CH)m = q and,
therefore, (Z,C))m = 0.

It is straightforward, if somewhat tedious, to show that the quadratic rules
of Groves-Ledyard satisfy these restrictions. We can obviously proceed in
a similar way to cubics and higher-order polynomials. Since polynomials
approximate most functions, we should be able to characterize ali efficient
Nash mechanisms this way; however, this remains to be done.

The approach of Brock (1980) can also be used to construct mechanisms
that generate Lindahl allocations at their Nash equilibria. If the joint message
m is a Nash equlibrium that produces a Lindahl allocation under a given
mechanism, then the tax share for each agent i, T{m), must equal g(m _,)y(m)
for Lindahl prices g(m.;) that may depend on the messsages m of other
agents, but not on agent i's own message. The Lindahl prices g{m._;) by
definition also sum to g. Thus, in place of the balancedness (1) and Sam-
uelson-Lindahl conditions (2) above, we have the conditions: (3) T{m) =
g{m_)y(m) and (4) Zq(m_) = q. It is easy to see that (3) and (4) imply
(1) and (2).

Suppose, then, that polynomial functions of m.; are constructed for
gi(m_;)). In the simplest case, that of constant functions, ¢q; = a; and the
mechanism would pick at a Nash equilibrium those Lindahl allocations for
which the marginal rates of substitution uy/u;, = a;. However, for any given
environment e, for a prespecified set of a;’s, such Lindahl allocations would
not likely exist.

Turning to the linear functions, g(m-,) = a; + bm with b; = 0, for the
symmetric case we need a; = (1/N)q and b, = 0. There are many such b;
Walker (1981) found one particularly simple structure, where b; = 1 if j =
i+1,b;=—1ifj=i—2,and b; = 0 otherwise. It is interesting to note
that the form of g; is independent of the form of y(m). As long as dy/dm,;

= 0 for all m and i, any function y(m) will do. We also know from Hurwicz
d—

¥
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(1.979b) that the form T, = g(m_;)y(m) is not necessary if h is to generate
Lindahl allocations. His mechanism, as defined above, has the form T(m)
= q,»(p~,~)y(r) + R(r,p), where m = (r,p). We note, however, that in equi-
llbnum R(r,p) = 0, leaving the form T, = g(m_.;)y(m). It remains an open
question whether all mechanisms whose Nash allocations are Lindahl have
essentially only this structure.

’Ijummg. now to private goods environments and proceeding as above,
we 1fnmed1ately run into a problem. As with Brock’s (1980) approach for
public goods mechanisms, we look for functions x(m) and T,(m) for all i
such that Zx,-.(m) = 0, ZT(m) = 0, and the Nash-equilibrium allocation,
(w;—T,,x);, is Pareto-efficient. These functions must then satisfy
Sx(m) = 0 and ZT(m) = O (the balancedness condition), and if
(du/dx;)(dx;,/dm) — (du/dy)(dT;/dm;) = 0 for all i, then there is a P such
that (du/dx,)(du/dy;) = P for all i. Given balancedness, we therefore require
that (dT(m)/dm,)/(dx(m)/dm,) = P(m) for all i and all m. Looking first at
x(m), suppose that M, = R"™" and x,(m) = m;, a proposed trade. This is not
balanced since, in general, Zm; # 0. To balance this, we can subtract the
average surplus, Zm;/N, and get x(m) = m; — [Em;/N]. We can rewrite
thls.as x,(m? = (N - 1)/N)(m, — r.), where r_; = Z,.m,/(N — 1). Re-
scaling m gives x,(m) = m, — r_,, which is Hurwicz’s rule. Now given this
rule for x,-(m), we can take the approach of Brock (1980) to characterize T.
Suppose T; is a polynomial, T; = a; + bm + ... . Then we require tha;t
2a; = 0, 2b; = 0, b; = P(m) for all m. Thus b; = b* for all i. If we also
require .sym.meu'y, then, in addition, a; = O for all i, and b; = —1/(N—1)b*
for all' i # j. Thus, T{m) = b*(m; — r_;) = b*x(m). The problem with these
rules is now obvious: we need to know the Walrasian price to know b* if
we .wxsh an equilibrium to exist, but the designer does not have that infor-
mation. In fact, it is impossible to find any T(m) that do the job we want.
The message space M is simply not big enough. As we indicated above, if
Nash allocations are to be Walrasian and # is to be differentiable then,M
must have dimension at least N(L — 1). In the public goods mode:l we as-
sumed that the vector of public goods prices was known to the designer and
thgt there was only one private good that also had a known price equal to
unity. That st.ill left an incentive problem in those models. If relative prices
were kno_wn in a private goods environment, however, there would then be
no 1qcept1ve problem. Let x(m) = m;, T(m) = —pm,, and h{m) = (x(m),T(m))
Ifpis u_xdeed a Walrasian relative price for e, then this is an efﬁ'cier;t lNasl;
meqhamsm. The mechanism is, of course, parametric since the relative price
p w1.11 depend on the environment e, and assuming that it is known is as-
suming away the incentive problem entirely. Presumably one can also design
mechanisms, for public goods environments, that not only choose the level
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of public goods but also choose prices and the level of private goods; how-
ever, this remains to be done.

In an important paper Hurwicz (1979a) took an entirely different approach
to the characterization of efficient Nash mechanisms. He was able to dem-
onstrate that, under fairly reasonable conditions, if one wants to design a
mechanism whose Nash-equilibrium allocations were Pareto-efficient and
individually rational on the classical private goods environments, then those
Nash-equilibrium allocations must coincide with the Walrasian allocations.
A similar result is obtained for public goods environments. That is, re-
markably, any mechanism designed to produce individually rational, effi-
cient, Nash equlibria would have to yield Walrasian or Lindahl allocations.
Attempts to obtain other allocations would be fruitless. Similar results can
be found in Schmeidler (1982a).

The precise nature of this amazing result is as follows:

THEOREM 4.10 (Hurwicz 1979a). Given an allocation mechanism A, sup-
pose that the Nash equilibria-allocations, h(b"(e;h)), are contained in
the set of individually rational, Pareto-efficient allocations for e for
each e in E.

(A) If b(e;h) is nonempty and upper semicontinuous on E, then, for
each e € E, the Walrasian allocations of e are contained in
h(b"(e;h)), the Nash-equilibrium allocations.

(B) Define B(m) = h(m/M)) — R%. (This is the set of consumptions
i can unilaterally get to from the message m.) If B(m) is convex
for all i and all m € M, then for all ¢ € E the allocations in
h(b"(e;h)) that are interior are also Walrasian. (An allocation is
interior if, for all i, x; + w; > 0.)

PROOF. See Hurwicz (1979).

Continuity of the Nash-equilibrium correspondence is a very desirable
property for an allocation mechanism for the same reason that continuity of
h is desirable. Small errors in observation or calculation will, then, not lead
to large perturbations in allocations. Convexity of the sets By(m) is desirable
because it is sufficient to ensure that the best response functions of the i are
upper semicontinuous, a property used to get upper semicontinuity of the
Nash correspondence. Thus both properties required by Hurwicz are rea-
sonable.!! They are satisfied by all five examples we have presented in this

11, Reichelstein (1984b) it is shown that without the convexity requirement, there are many
more implementable choice rules; in particular, the one that selects individually rational Par-

eto-optima is fully implementable (Corollary to Proposition 3.1).
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section. Of these mechanisms, only the quadratic rules of Groves-Ledyard
do not have Walrasian or Lindahl allocations as Nash outcomes. The reason
is that the mechanism does not satisfy the requirement of individual ration-

ality.

To summarize: individually rational, efficient Nash mechanisms with
continuity and minimal message spaces are those that produce Walrasian or
Lindahl allocations. In private goods environments the appropriate mecha-
nisms are those of the following general form: Let M; = R-' x R* where

kzL— 1. Letm = (s:,p:), and define x(m) = §; — V~i where

=S —

j#lN—l

s; and t(m) = fi(m-)x(m) + T{s-i»P)s

where min T{(s-»P) = 0 for all s;.

p

In public goods environments, assuming relative output prices are known,
the appropriate mechanisms are those of the following general form: Let M;
= RX and define y(m) = Zm; and T(m) = fm_)y(m) where 2f(m.) = 4.
If relative prices also need to be determined by the mechanism, then a larger

message space will be needed.

If we forego individual rationality, other mechanisms, such as the qua-
dratic rules for public goods, become available. And, if we are willing to
forego continuity, we may be able to reduce the size of the message space;

full characterizations, though, remain to be done. "

4.1.3. Manipulative Equilibria

The assumption that behavior is modeled by Bayes equilibrium or Nash
equilibrium is, by far, the most common in the literature. However, it has
been argued by some that the assumption of Nash behavior views partici-
pants to be somewhat naive. Thus it might be expected that more clever
agents would find out that they could improve on their allocation with more
sophisticated play. Since we always assume that players in these games are

at least as clever as the modelers, this observation raises some serious issues

for mechanism design which must be considered.

To illustrate this problem, consider a two-person environment with the
mechanism h, which is known to be an efficient Nash mechanism. That is,
h(b"(e;h)) is Pareto-efficient in e for all e € E. Now consider the indirect
utility function of m given by vim) = u(h(m),e;) for each i. We can plot

’Ip a related paper, Aghion (1984) has shown that the set of continuous mechanisms W

equilibria are inefficient is dense in the set of continuous mechanisms. This, however, still

leaves more than enough candidates whose equilibria are efficient.
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S

Figure 2.6. Example showing that a manipulative Nash equilibrium cannot be Pareto
optimal.

the indifference curves for i = 1 as in Figure 2.6. Although it may not be
the fully rational game-theoretic equilibrium, one way to think of a single
agent’s behavior in the infinite iteration process is as a myopic maximizer
at each iteration. If we let m, = mf, then we can find the m, that maximizes
v, given m%. This is m? in the diagram. In fact, we can plot all such best
replays as the locus RR in Figure 2.6. Similarly, we can plot the best re-
sponses of agent 2 as the locus SS. The intersection of the S§ and RR curves
gives us the Nash-equilibrium messages, the only stationary points consis-
tent with this myopic behavior. But agent 1 has available a better strategy
if 1 can identify the function SS. If 2 will indeed respond as predicted by
the Nash assumption, then if 1 chooses m, to maximize v(m) subject to the
joint strategy (m,,my) lying on ss, 1 will be better off. Of course, it is
possible for 1 to disguise this manipulative behavior. Instead of choosing a
single message, 1 can pretend to have preferences that yield the pseudore-
sponse curve R'R'. That is, 1 chooses ¢, to maximize his indirect utility
u(h(b"(e/e'l));e,). Then, if 2 behaves myopically according to SS and 1 be-
haves myopically according to the response function for e;, the same result
will occur as if 1 were to choose .2

If all agents attempt this level of sophisticated behavior in our general

-

Economists will note that these are old concepts in the literature. The Nash equilibrium
was proposed by Cournot in modeling oligopoly. The sophisticated resonse was proposed by
Stackleberg to model leader-follower price-setting behavior.
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model of resource allocation, an appropriate equilibrium concept for this
situation would be what Hurwicz (1975) called the manipulative nash equi-
librium. Formally, m* is a manipulative nash equilibrium (MNE) if m* =
b"(é,h) where ulh(b"(é,h));e] = ulh(b"(é/e,h));el] for all e; € E; and (- ,h)
is the (naive) Nash-behavior rule given the mechanism h. Manipulative Nash
Behavior b"(e;h) then is defined as the mapping from environments e to the
MNE for e. This concept may be interpreted as the equilibrium joint message
that would result if all agents behave during the iterations as if they are
(naive) Nash players but strategically choose the personal characteristics &
that generates the best Nash response for them, given that the others are
following Nash behavior as well. Alternatively, we could imagine that the
given mechanism A is implemented as a direct revelation mechanism A’ in
which each agent is asked for the characteristic &, and the allocation then
calculated is that which would be given by the original mechanism h if the
joint message 1 is the (naive) Nash equilibrium for the stated character-
istics €.

The implications of manipulative Nash behavior for efficient mechanism
design are negative as established by Hurwicz in the following theorem:

THEOREM 4.11 (Hurwicz 1981). There are no mechanisms k such that the

manipulative Nash allocations, h[b¥(e;h)], are Pareto-cfficient on the
classical environments.

PROOF. See Hurwicz (1981).

A corollary to this theorem is that even if a mechanism is an efficient
Nash mechanism, its manipulative Nash allocations are not Pareto-efficient.
Thus, even if a mechanism is designed to effectively channel the incentives
under (naive or nonmanipulative) Nash behavior, if agents are sophisticated
and adppt manipulative Nash behavior, the effect will be unsuccessful (See
Thomson (1984) for some results concerning likely outcomes under manip-
ulative Nash behavior in environments with quasi-linear preferences.)

Although it may appear that no mechanism can prevent sophisticated ma-
nipulation from leading to inefficiency, we should note that the definition
of manipulative behavior above is based on the assumption that the under-
lying, naive behavior is Nash. We can generalize the above notion of ma-
nipulative behavior by considering other naive models. For example, let b(e;h)
be an arbitrary model of behavior for the mechanism h. If this model is
correct, then the outcome will be h(b(e;h)). But clearly, we can also use
this model to compute an optimal manipulation. We call b"(e;h,b) the ma-
nipulative-behavior model, given h and b, if b: E — A where b"(e;h,b) =
h(b(e*;h,b)) and ulh(b(e*;h));e] = ulh(b(e* Jel;b))ei] for all i and e} € E,.
That is, e* is a Nash equilibrium of the direct revelation mechanism fle';h,b)
= h(b(e',h)). This generalizes our previous definition in the sense that b =
", or Nash behavior, is only one possible b. To see that the assumed be-
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havior b is important, consider the following theorem which stands in direct
contrast to Hurwicz'’s result.

THEOREM 4.12 (Reichelstein 1982). If h is an efficient Nash mechanism
and if the postulated behavior is b(e;h) = [bi(eish),. - .,ba(en;h)] where
b(-;h): E;— M, is an onto map, then the allocations h(b"(e;h,b)) are
Pareto-efficient.

prROOF. See Reichelstein (1982).

(Note that the postulated naive behavior cannot be Nash behavior!) This
theorem asserts that if each agent postulates that all others’ naive behavior
depends only on their own characteristic e;, then the manipulative-equilib-
rium allocation will be efficient if h is a Nash-efficient mechanism. Notice
that if all i follow the postulated naive behavior b and do not manipulate,
then h(b(e;h)) cannot be efficient over all E. The main problem with this
result is that it does not make sense to us to assume that sophisticated be-
havior is Nash when naive behavior is not. The players’ postulate about each
other’s naive behavior should be consistent with the assumed level of so-
phistication.

It is important to note that with arbitrary outcome function-behavior rule
pairs (h,b), the analysis becomes simply that of direct revelation mecha-
nisms. That is, given (h,b), define fle) = h(b(e)). Any question about the
manipulative performance of h, given the assumption that the naive behavior
is b, is equivalent to the same question about the Nash-equilibrium behavior
of the mechanism with M = E and h'(m) = flm). For example, (h,b) has
efficient manipulative equilibria if and only if fis an efficient (direct rev-
elation) Nash mechanism.

An interesting result that follows from the above is:

THEOREM 4.13. There exist individually rational direct revelation mech-
anisms for classical environments such that their Nash equilibria are
Pareto-efficient. However, at the Nash equilibria, the agents’ (equilib-
rium) messages e¥ = m*are not, in general, coincident with their true
characteristics e;.

prROOF. Follows from Theorem 4.12 (Reichelstein), Theorem 3.1 (Hur-
wicz), and Theorem 3.2 (Ledyard and Roberts).

In view of these results, it is important to ask how likely manipulative
behavior is. For one-shot implementations of mechanisms it is hard to find
any rationalizations for manipulative behavior (as defined here); its plausi-
bility surely depends on some form of iterative implementation of a mech-
anism. However, when a mechanism is iteratively implemented, many as-
pects that are not included in a normal form description of the mechanism
become important. As Smith (1982) has emphasized for experimental eco-
nomics, detailed instructions must be specified to implement any specific
mechanism. Suppose, for example, that we wished to use the Walker mech-
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anism to make a public goods choice. The instructions would have to spec-
ify:

(1) The language of communication. If there is a single public good, then
the message any agent sends to the experimenter (or the center or the
auctioneer) is a single real number, say m;. Then, the experimenter will
return a message to each agent. In this particular mechanism, this mes-
sage may be all others’ responses, or just the responses (m;_,,m,,,), or
a number, say g,, where ¢, = (1/N)q + m,_, — m;,,. Each of these
responses by the center represents, in principle, a different institution.

(2) The timing and addresses of communication. All agents must know when
to communicate their responses and when to expect to receive responses.
The agents must also know to whom to send a message and from whom
to receive one. In the above centralized institution, communication pro-
ceeds in orderly iterations where each agent sends a message m; to the
experimenter who, after receiving all responses, sends a (possibly dif-
ferent) message simultaneously to each agent. It is this step that begins
to identify what each agent knows, other than e;, at each step of the
process.

(3) A stopping rule. The communication process must stop sometime, and
the nature and timing of its cessation must be specified. One possible
example, in this case, is to state that the iterative process described in
(2) will end either (a) when all agents match their previous messages
two times in a row or (b) when, say, thirty iterations have elapsed,
whichever occurs first. It should be obvious that if (b) is deleted, we
would have a radically different process: different stopping rules may
lead to dramatically different outcomes.

(4) An outcome rule. Each agent should know what action is to be imple-
mented after the communication ceases. One rule for the Walker mech-
anism could be as follows: If (3a) is the reason communication ended,
then the experimenter takes the last response of each agent and computes
as follows: the public goods level chosen is y = =m;, and each i pays
T, = (1/N)g + m;_y, — m,,,)y. This is simply the rule (x,,...,xy,y) =
h(m) If (3b) is the reason communication ended, then let (X150 Xn,Y)
= 0. That is, if there is no agreement, the status quo is the implemented
allocation.

If the experimenter or the mechanism designer did not specify all of the
above components of the process, the mechanism 4 could not produce a
choice. Thus the entire process is necessary. It is also important since it is
highly unlikely that, in practice, different versions of (2) and (3) will pro-
duce the same allocation even if (1) and (4) are identical versions of the
same mechanism. This means that the behavior, b(e;h), may be different
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depending on the (generally unspecified) components of the process. The
normal form of the mechanism may be an insufficient description for a thor-
ough analysis of the performance of designed mechanisms. Thus, a deeper
analysis of manipulative behavior must depend on a rigorous analysis of
behavior when details of the extensive form are specified." In particular,
given the process (1) to (4) above, each agent is faced with a complex,
sequential, incomplete information game. Manipulation can be achieved only
through the sequence of messages one sends, and the real issue is whether
the outcome attained is near to the normal-form Nash equilibrium."® This is
both an empirical and a theoretical issue: empirical in the sense that what
we want to know is how agents will actually behave when confronted with
a new mechanism, and theoretical in the sense that we want to know how
agents should behave when confronted with a new mechanism. It is our view
that when this type of analysis is done, it will be discovered that the specifics
of (1) to (4) will be very important, and that there are processes in which
sophisticated manipulation is virtually impossible because of the informa-
tional requirements of such a strategy. Of course, these remain open ques-
tions.

4.1.4. Other Possibilities

The design and evaluation of efficient mechanisms have been carried out
for other types of presumed behavior. We include two of the more common
types in this section for completeness.

The main results in the area of maximin behavior are attributable to
Thomson (1979). Maximin behavior results from an agent’s hypothesis that,
for each message chosen, the other players will jointly choose their messages
to minimize his payoff, given his message. Under this hypothesis, the agent

“It should be noted that in his initial papers in this area, Hurwicz carefully specified the
iterative process of communication. Many of those models of resource-allocation mechanisms
were complete processes in the sense that (1), (2), and (4) were explicitly specified. The
stopping rules (3) were implicit, but, since only “equilibrium” messages were considered,
they were probably something like (a) above. Actually, the initial specifications of Hurwicz
went further as each agent was also told which response to make given the message of the
center and his own characteristic. It was the realization that the designer could not guarantee
that the specified rules would be followed, since the designer did not know the particular ¢;
of each agent, that led to the formulation of the incentive problem as we have presented it in
this chapter.

“Indeed the fact that the Complete Information Nash equilibria are not in general Manip-
ulative Nash equilibria leads us to suspect that detailed analysis of the incomplete information,
repeated game will show that the outcome will not be near to the outcome attained at the
normal-form Nash-equilibrium messages.
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then chooses a message that maximizes this minimum payoff. Thomson has
shown that for the subset of environments with quasi-linear preferences, there
exists an efficient maximin mechanism. Results for other environments are
unknown. The maximin behavioral rule arises naturally in the context of
two-person zero-sum games but does not seem to be compelling in the N-
person NONZEro-sum games that we consider in this chapter. Only if the
individuals are infinitely risk averse or extremely paranoid should they be
expected to behave as required by the maximin hypothesis.

The other behavioral rule rests on an assumption of myopia that arises
naturally in the context of planning procedures. The research in this area
for private goods environments dates to the debate over the relative merits
of socialist planning and free markets. Refer to the planning models of Mal-
invaud (1967), Weitzman (1970), and Heal (1973), and to the survey of
Hurwicz (1973) for a summary of this literature. For public goods environ-
ments, the initial literature consists of papers by Malinvaud (1971) and by
Dreze and de la Vallée-Poussin (1971). Robert’s work in this volume (Chap-
ter 14) provides an excellent summary of the extensive literature that fol-
lowed from these original papers. Our remarks here are intended merely to
provide a bridge between our chapter and his. The general structure of these
planning procedures bears a close resemblance to the processes described in
the previous section on manipulation. The main formal difference is that,
in general, the outcome rule of a planning procedure depends on the entire
sequence of messages sent, not just on the last message.

Formally, a (discrete time) planning procedure is a language, M;, for each
i, a state space, S, and an explicit iterative process of communication. This
iterative process is modeled as

s+ 1) = fs(t),m(D), fordatest=1,2,.... )]

The final allocation determined by the process is given by an outcome rule,
h(s) = a, and a stopping rule which defines that state s(f) to which & is to
be applied. If A) is defined so that s(z + 1) = m(1), then this is an allocation
mechanism with h as the outcome function. The generalized form (1) allows
planning procedures that are indirect control devices; that is, instead of di-
rectly determining the outcome through h, the agents directly control s and
indirectly control the outcome through the cumulative effect of m on s. This
allows for smoother but possibly less-rapid convergence to the desired al-
location.

In the Dreze—de la Vallée-Poussin and Malinvaud (DVM) mechanisms,
m, is a vector of marginal rates of substitution, or marginal willingnesses to
pay, and s is the “proposed” allocation. (Although in the original papers,
(1) is in continuous form, that is, ds/dt = fis,m), we consider here the
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discrete-time versions.) In these models the appropriate response rule of each
i is specified as

mi(t) = g(s(1).€, 2

the assumption being that each agent will follow the rules. Of course, it was
realized that agents might not, and the incentive properties of the procedures
were analyzed in those papers under different behavioral assumptions. The
basic approach is to assume that, at each iteration, an agent is only con-
cerned with the current increase in utility. This is similar to assuming that
the agent thinks the current iteration is the last and that A(s(t + 1)) will be
implemented. We can analyze this myopic, or local, behavior in the same
way that we have analyzed the global model. We give two examples and
refer the reader to Roberts (1985) for others.

In their 1971 paper Dreze and de la Vallée-Poussin presented a planning
procedure with the property that if agents adopt local maximin behavior,
then they will report their true marginal rates of substitution and the pro-
cedure will then converge to a Pareto-efficient allocation. That is, in clas-
sical public goods environments with a finite set of agents, there exists an
efficient, local maximin procedure. Roberts (1979) has shown that if agents
use local Nash behavior (that is, m(z) is a Nash equilibrium for the local
game), then the same DVM procedure will converge to Pareto-efficient al-
locations, although at a slower rate. That is, in classical public goods en-
vironments with a finite set of agents, there exists an efficient, local Nash
procedure. One drawback of the local Nash assumption is that it is not clear
how agents are to determine these Nash responses since the procedure does
not explicitly allow for a sequence of iterations of messages before m(¢) is
determined. Thus the justification we used for relying on the (global) Nash
assumption is missing for the local Nash assumption. If agents look ahead
instead of behaving myopically, we are in a similar situation to that de-
scribed in the last section on manipulative equilibria of mechanisms.

The form of the planning procedure (1) provides the agents with a dy-
namic game where the strategies are my-), functions of ¢t from 0 to T, the
transition equations are given by (1), and the payoffs are u(h(s(T)),e;) for
each i. If i knew the strategies of the others, i could compute a best-response
strategy by solving an optimal control problem, but as in the case of the
manipulation of allocation mechanisms, each agent only knows his own
characteristic and the sequence of reports from the center. This is thus a
complicated, sequential, incomplete information game. Truchon (1984) has
shown, for quasi-linear preferences, that there is a discrete time process
whose perfect Nash equilibrium converges to an efficient allocation. Roberts
(this volume) has also begun an analysis of this problem but with essentially
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negative results. He concludes that the informational savings involved in
adopting an iterative procedure can be realized only at a cost of lost effi-
ciency. In other words, there may be no planning procedures whose se-
quential equilibrium allocations are Pareto-efficient. See Roberts (this vol-
ume) for a discussion of this and possible future research.

4.2. Parametric Mechanisms

We have seen that if we restrict ourselves to nonparametric outcome func-
tions, then it is impossible to design efficient, dominant-strategy mecha-
nisms if the class of environments is reasonably large. It is, however, pos-
sible to design efficient Nash mechanisms, but, again, if the class of
environments is reasonably large, then the outcome rules for these mecha-
nisms cannot be fully feasible. The logical next step in the development of
the theory of allocation mechanisms is to explore what can be accomplished
if we allow parametric outcome functions. If information about the envi-
ronment e, or about the class of environments E, can be used in the outcome
function, even though that information was not transmitted as a message by
any agent, then we say that function is parametric. We denote such functions
by h(m,I(e)), where I(e) denotes that information about e which is to be
used by A. This information usually is used in one of two forms: either direct
information about the specific environment e, or indirect information about
the range of possible e in E in the form of a probability measure on E. Let
us look at each of these.

4.2.1. Direct Information

One of the drawbacks of many of the mechanisms whose Nash-equilib-
rium allocations are Pareto-efficient is that, at non-Nash equilibrium mes-
sages, the outcome rule may compute an allocation that is not feasible for
some i, even if that rule is continuous and balanced. (See Theorem 4.8
above.) If such a mechanism were actually used in, say, an iterative process
that was terminated prior to the attainment of a full Nash equilibrium, then
some agents might not be able to survive on the indicated allocation. Hur-
wicz, Maskin, and Postlewaite (1982) overcame this problem with the use
of parametric outcome rules. They incorporated direct information about the
initial endowments into the outcome function h by allowing the admissible
strategies to depend on the initial endowment w. The function h maps strat-
egies into actions as follows: h: S(e) = A, where S(e) = II(Si(e) and Sie)
= M, X [0,w;]. This form of parametric function possesses two desirable
features. First, it retains much informational decentralization since no agent
need know the characteristics of the others. Because of this feature, Hur-
wicz, Maskin, and Postlewaite called these outcome functions decentralized
parametric. Second, the center need only be able to verify that each agent
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has at least as much initial endowment as reported. Endowments are, in
principle, capable of being audited; in this case, however, agents need only
produce the claimed allocation. Ignoring the costs of that auditing proce-
dure, we find this class of parametric functions to be a natural candidate for
consideration in our search for efficient mechanisms.

In their paper Hurwicz, Maskin, and Postlewaite (1982) consider this class
of mechanisms in detail and provide a list of possibilities. Although they
consider both private and public goods environments, let us restrict our at-
tention, for now, to classical private goods environments. The results for
public goods environments are the same as those below if we replace the
identifier “Walrasian” with “Lindahl.” The first result follows from a clever
example and a theorem of Maskin (1977) on necessary conditions for im-
plementability when endowments are known by the designer.

THEOREM 4.14 (Hurwicz, Maskin, and Postlewaite 1982). There is no
decentralized parametric outcome function such that h(b"(e;h)) = W(e)
on the class of classical private goods environments.

PROOF. See Hurwicz, Maskin, and Postlewaite (1982).'

The difficulty in producing the desired mechanism arises in those envi-
ronments in which the Walrasian allocation is on the boundary of the feasible
set of allocations. Hurwicz, Maskin, and Postlewaite show, however, that
it is possible to adjust for this anomaly and to produce a decentralized para-
metric mechanism that is feasible at all messages and that selects efficient
Walrasian allocations when these are interior and efficient allocations oth-
erwise. Before presenting their mechanism, consider the following useful
performance correspondence. The Constrained Walrasian correspondence,
CW(e), is defined as follows: CW(e) = {(xs5. . - 0xN) | there is p such that
S.CD(p) = 0, x; € CD|(p) for all i}, where CD(p) = {x; | px; = pwi, u(x;,e)
= u(z,e;) for all z such that pz = pw; and z < 3,w,}. Note that these are the
market equilibrium allocations when individual demand choices are con-
strained so that agent i’s demand does not require more of any commodity
than is available to the entire economy. Letting P(e) be the Pareto-efficient
allocations for e and IP(e) be those a in P(e) such that u(a,e) = u(w;e,) for
all i—that is, the individually rational allocations—we can describe the re-
lationships between these various performance correspondences as follows:

"“They actually prove more: even if the designer knows the initial endowments, the Wal-
rasian correspondence is not implementable since it is not monotonic. A performance corre-
spondence, P(e), is said to be implementable (in Nash equilibria on E) if and only if there is
an outcome function h such that h(b")e;h)) C P(e) for all e in E. A performance correspon-
dence, P(¢), is monotonic if, given a € P(e), for any ' € E such that whenever u(z,e;) =
u(a,e;) implies u(z,e) = u(a,e)), then a € P(e').
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W(e) C CW(e) C IP(e) C P(e) for all e € E. Note that W(e) = CW(e)
whenever a € W(e) implies that a; > 0 for all i, or, less restrictively, when-
ever a, < w for all i. Given these concepts, we can state the following:

THEOREM 4.15 (Hurwicz, Maskin and Postlewaite 1982). There is a de-

centralized parametric allocation mechanism, with finite dimensional
messages, for which h(b"(e;h)) = CW(e) on the classical private goods
environments.

pROOF. See Appendix to Section 4 for a sketch of the proof.

The mechanism described in the proof of this theorem is such that its
Nash-equilibrium allocations are constrained Walrasian allocations as long
as endowment misrepresentations can only be less than the true endowment;
that is, endowments can be withheld. Hurwicz, Maskin, and Postlewaite
also provide a proof of the above theorem if withheld endowments must be
destroyed. Such would be the case if, for example, endowments not only
can be required to be shown but also can be found if they are withheld. In
practice, the former is similar to the requirement that a buyer demonstrate
a sufficient bank balance prior to purchase, whereas the latter is similar to
an IRS tax audit. The former is clearly less expensive than the latter.

The Hurwicz, Maskin, and Postlewaite theorem implies the following
simple corollary:

COROLLARY

(a) There exist decentralized parametric, feasible Nash-efficient al-
location mechanisms on the class of classical private goods envi-
ronments.

(b) There exist decentralized parametric, feasible Nash-efficient al-
location mechanisms whose allocations are individually rational.

Also, a slight modification of Hurwicz’s theorem characterizing Nash-
efficient mechanisms establishes Theorem 4.16.

THEOREM 4.16 (Hurwicz 1979). If h is a continuous, decentralized para-
metric outcome function such that the Nash-equilibrium allocations are
individually rational and Pareto-efficient, then the constrained Wal-
rasian allocations are contained in the Nash-equilibrium allocations.
That is, CW(e) is the smallest individually rational, Pareto-efficient
performance correspondence that is implementable with a decentral-
ized mechanism.

prOOE. See Hurwicz (1979).

One drawback of the mechanism used to demonstrate existence of Nash
efficiency above is that the function, h(s,v), defined in Appendix 4 by equa-
tions (1.1) to (1.3), is not continuous in either s or v. There is, however, a
mechanism established by Postlewaite (as reported by Schmeidler 1982b)
that is continuous in s and which can be used to establish similar results.
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THEOREM 4.17 (Postlewaite and Wettstein 1983). There exist decentral-
izable parametric, feasible Nash-efficient mechanisms, h(s,v), that are
continuous in s.

PROOF. See Appendix 4 for a sketch.

It remains an open question whether there exist continuous (in all m)

decentralized parametric, feasible Nash-efficient allocation mechanisms for
the classical private goods economies.

4.2.2. Indirect Information

In his seminal article of 1972, Hurwicz considered briefly a model of the
design problem which is a little different than those we have considered
here. In his model, there was a welfare function on outcomes, W, so that
the welfare associated with the mechanism A, given the behavior b, in the
environment e could be expressed as w = W(h(b(e;h)).e). A variant of this
model allowed resources to be expended in the operation of the mechanism.
Thus, for this variant, if r(h,e) is the cost of operating mechanism h in the
environment ¢, w = W(h(b(h;e)) — r(h,e),e) = w(h,b,e) The designer’s
problem was then recognized to be the statistical decision problem to max-
imize w over the set E by choosing h. If a probability measure over E were
available to the designer, the designer might choose h to maximize expected
welfare. This important observation by Hurwicz foreshadowed the literature
on optimal auction design and provided the basis for the inclusion of what
we call indirect information into the design of the allocation mechanism.
This information will be in the form of a probability measure on E, which
is common knowledge to all agents and to the designer. This is indirect
information in that it is not directly auditable since, just as in the case of
preferences, probability beliefs are nonobservable and may be only indi-
rectly inferred from evidence about actions. This inability to audit beliefs
raises serious questions about the efficacy of mechanisms that are designed,
assuming knowledge of those beliefs. However, since the literature in this
area is extensive and others do not share these doubts, we summarize the
results under the assumption that the mechanism can indeed use indirect
parametric information.

Suppose that P(E) is the set of probability measures on E. Consider para-
metric mechanisms, h(m,.,...,my,p) where p € P(E). In the language of
incomplete information games, we assume that p is common knowledge to
the mechanism designer, the mechanism operator, and all the agents. At
issue is the same question we have addressed all along: given some behavior
that is consistent with the agents’ incentives, are there any mechanisms of
this type such that some specified performance results? A natural assumption
of reduced form behavior in this type of mechanism, given the common
knowledge assumption, is that of Bayes equilibrium. This was defined ear-
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lier in section 4.1.1 as follows: A strategy for i is a function d;: E; =& M,.
A Bayes equilibrium, given h and p, is a vector of strategies (d,,. . .,dn) such
that for every i and every e;, di(e;,p) solves Max Je_, u(h([my(ey), . . e/
m..p).e)dplele) where E_; = L., E,. Given a Bayes equilibrium, d, the
outcome is a = h(d(e,p),p) for each e in E. Of course, multiple Bayes
equilibria” can be a problem in the same way as multiple Nash equilibria,
although for our purposes there is no difficulty. For example, if we want
h(d(e,p),p) to be efficient and there are multiple equilibria, let D(e,p) be the
set of equilibria. Then we simply ask if h(d,p) is efficient for all d € D(e,p).

One question that immediately suggests itself is whether there is any in-
direct information mechanism that is also efficient at Bayes equilibria, in
the sense that h(d(e,p),p) is Pareto-efficient for all e in E. There are at best
some partial answers. In classical public goods environments, if we further
restrict preferences to be quasi-linear, there exists an efficient parametric
mechanism for a subset of possible probability measures.

THEOREM 4.18 (D’Aspremont and Gerard-Varet 1979). If E is the set of

classical public goods environments with quasi-linear preferences and
p is a probability measure on E such that ¢; is distributed independently
of e, for all i, then there exists a direct-revelation mechanism h:(M,p)
—> A such that e = d(e,p) and h(e,p) is Pareto-efficient forall e in E.

PROOF. See Appendix 4 for a sketch of the proof. This theorem was also
discovered independently by Arrow (1979).

It remains an open question, as far as we are aware, whether there exist
parametric mechanisms that are efficient at all Bayes equilibria for all clas-
sical environments, although Postlewaite and Schmeidler (1985) have made
progress under some information structures.

4.3. Summary

Combining the results in the previous sections, we can summarize the state
of knowledge concerning the possibilities for the design of efficient, incen-
tive-sensitive mechanisms in finite environments.
THEOREM 4.19. In classical environments (both private and public goods)
with at least two agents:

(a) There do not exist nonparametric, efficient Bayes mechanisms
(Section 4.1.1).

(b) It is an open question whether there exist parametric, efficient Bayes
mechanisms (Section 4.2.2).

"]t is interesting that there are few examples of multiple Bayes equilibria in resource al-
location models. The apparent example in Laffont and Maskin (1982) is, unfortunately, not
valid. See, however, Postlewaite and Schmeidler (1986).
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(c) For environments with at least three agents, there exist continuous,
balanced, nonparametric, efficient Nash mechanisms (Section 4.1 2).

(d) There do not exist nonparametric, individually feasible, nontrivial,
efficient Nash mechanisms (Section 4.1 2).

(e) There exist decentralized, parametric, feasible, efficient Nash
mechanisms (Section 4.2.1).

(f) It is an open question whether there exist continuous, parametric,
feasible, efficient Nash mechanisms (Section 4.2.1).

(g) There do not exist nonparametric mechanisms whose manipulative
Nash allocations are Pareto-efficient (Section 4.1.3).

(h) There exist nonparametric planning procedures that generate ef-
ficient allocations under either local maximin behavior or local Nash
behavior (Section 4.1.4).

(i) It is an open question whether there exist planning procedures that
generate efficient allocations under sequential Bayes behavior
(Section 4.1.4).

Finally, we should emphasize the open questions raised by the concept
of manipulative equilibrium, by Roberts’s work in this volume on planning
procedures, and by our justification of the assumption of Nash-equilibrium
behavior. There is not a consensus normal- or extensive-form model of ra-
tiona! behavior for agents in iterative processes.

Appendix: Sketches of Proofs

We include in this appendix sketches of proofs of a few of the major theo-
rems of Section 4.

Sketch of Proof of Hurwicz, Maskin, and Postlewaite Theorem 4.15

Hurwicz, Maskin, and Postlewaite (1982) define a decentralizable para-
metric allocation mechanism that satisfies the conclusion of the theorem in
two steps. First, an auxilliary function is given that determines outcomes,
given reported endowments w, h(s,,...,sn.w) = a. This auxilliary function
is defined to be feasible, given w, for all messages s, and so that (B (e;h),w)
is Pareto-efficient in the environment with preferences as in e and endow-
ments w. Let 5, = (x,p) and S; = {(p.x) € P'xR\|px = pw;}, where x;
denotes the total consumption (not net trade) of the i" agent.

The outcome function k, for total holdings, is defined as follows:

1. If there exist i, j, k € N such that p;, p;, px aré distinct, then
h(s) = [l x |/ Zren | % [Iw, for all £ € N.

2. If there exist only two distinct announced prices p' and p”, and at least
two agents announce each p’ and p’, then h(s) = w; for every i € N;
that is, there are no trades.
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3. If there is a p such that p; = p for all i € N (unanimous agreement on
the announced price), and

Exi # w, then h(s) = w;, forall i € N; or
%= w, then hs) = x, forall i € N.

4. If there is a p and an agent m € N such that p,, # p but p; = p for all
j # m, then

if [ pW/ PXnbtn = W;

hi(s) = w—hys)lfor j#m

N -1

h(s) =w, foralliE N, if [pWa/ DXplim = W.
It can now be shown that k(b (e/w;h),w) = CW(e/w) for all e € E and all
w= 0.

The next step in the proof is to provide a mechanism that yields the cor-
rect reported endowment as a Nash equilibrium. Let m; = (v;,x;,p;), where
x, € R*, pi € R*, and v; € RY". Note v; = (Vi,...,vin), Where v;; can be
interpreted as i’s report about j’s endowment. Let M, = {m}, M = ILM,.
For all i,j it is required that v; = w;. The outcome function, h(v,s), is defined
as follows:

(a) If there is a ¥ such that v; = ¥ for all i, then

h(m) = h(v,s) as defined previously. 1.1)

If not, then let

v(m) = zvii
A(m) = {i € N|v; = v, forall j #i, jE N},
B(m) = 2 2 | vi; = v |l, for all i, and

A ki

G(m) = 2 | vi = v ||, for all i.
j

Thus:

(b) If A(m) = @ (the empty set), but there is no v such that v; = v for all
i€ N,then2;B; >0

T
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and we set
B{(m)

2 B j(m)

i

h(m) = v(im) — v, foralli € N. (1.2)

And
(c) if A(m) # &, then 2,G;(m) > 0

and we sct
G(m)
———— v(m) — v; for i € A(m)
him) = ;‘Gf(’") (1.3)
-V fori & A(m).

Sketch of Proof of Postlewaite and Wettstein Theorem 4.17

Let s, = (pizr) € Si X RY where §; = {(p,z) € RL X R |pz=0
and Zi_,psx = 1}. Given messages si,...,Sn and endowments wy,...,Wy,
define: a; = Z4ulp; — Pils @ = ¥ a, b = a;/a if a > 0, and b, = 1 if
a =0, p = I ,b;p;. Define x; to be the closest point to z; in {z|p-z=0,
z + w; = 0}. Finally, let b/ (sy,...,.s;;W) = r*-r;-x; + (r*-r; — )w; where
r* =maxfr ER | r-r, =1,V i and Zr-rlx + w) = Tw;}. Now, in
equation (1.1) use h'(s;w) in place of the function h(s,v). The function now
defined by (1.1"), (1.2), and (1.3) satisfies the conclusion of the theorem.

Sketch of Proof of D’Aspremont and Gerard-Varet Theorem 4.18

The appropriate mechanism is a Groves mechanism with transfers ar-
ranged so that they balance (i.e., the transfers sum to zero). The mechanism
is a direct revelation mechanism and chooses y = y(my,...,m,) and f; =
t{m,,...m,) as follows. Remembering that u(x;,y,e) = u(y.e) + X for all i,
y(m,,...,m,) maximizes W(y,m) = Su(y,m;). Let x(m) = w; — t(m.,p), where
t{mp) = - I:L.-u(y(m)’ej)dp(e/ m) + (1/n—1) Zimi .'.E~,u()’(m),mj)@(e/ my).
Thus t(m,p) = —g(m;,p) + (1/n—1) Snii(my,p). Given any true value, e¥,
agent i wants to choose m; to maximize u(y(de)/m).e¥) — [ £ u(y(de)/m).e)
dp(e/e;). 1t is easy to verify that ¢, = e}* solves this problem.

5. Large Economies and Efficient
Dominant-strategy Mechanisms

Hurwicz (1972) was well aware that both the pessimistic impossibility re-
sults of Section 3 and the need to consider nondominant strategies might
disappear if there were a large number of traders. In particular he noted that,
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regarding incentive compatible and efficient mechanisms, the crucial dis-
tinction is whether the economy is atomistic or not. We turn now to an
exploration of this observation. The main question of interest is whether
some type of approximation to the design of efficient dominant-strategy
mechanisms is possible when there are a large number of agents. A second
question of interest is whether there is any difference in the answers for
private and public goods. The standard approach is first to consider envi-
ronments with a continuum, or a countable infinity, of agents and then to
“pass back” the results, using continuity, to large but finite economies. We
follow that approach here.

5.1. Continuum Environments

It has long been conventional wisdom that, in private goods environments,
if there are a large number of consumers then price-taking behavior is in-
centive compatible. We have been unable to find a formal statement and
proof of this insight in the literature although there is an implicit under-
standing of it in a paper by Roberts and Postlewaite (1976). Hammond (1979)
presented a theorem by utilizing a model with a continuum of agents that
was developed by Aumann (1966). Some ambiguities were later cleared up
by Champsaur and Laroque (1981). We present a slightly modified version
of this theorem.

THEOREM 5.1. In private goods environments with an atomless continuum
of agents, the competitive mechanism defined above in Section 2.3 is
an efficient, dominant-strategy mechanism.

PROOF. See Appendix to Section 5 for a sketch of the proof.

This result should surprise no one. The fact that a similar result is ob-
tained in classical public goods environments with a continuum of agents
should surprise many since this runs counter to Downs’s (1957) and others’
intuition. To see why, we first present a specific direct-revelation version
of an allocation mechanism for public goods. The message of any agent is
that agent’s characteristic. The outcome function picks a level of public goods
and a vector of net trades in private goods. Given a vector of announced
characteristics e’, let P(e') be the set of Pareto-efficient allocations for e’.
(Remember that these announced characteristics may well be different from
the true characteristics making up the true environment, e.) Let F(e') be
those allocations in P(e’) such that px; = pw;, — (1/N) qy, where (p,q) are
the prices that support the Pareto-efficient allocation (x,,...,xy,y). Then h(e’)
= F(e') is called the fair-efficient mechanism since all agents “pay” an equal-
cost share of the public good. It does not necessarily select Lindahl allo-
cations and is, therefore, different from the privately fair Lindahl mechanism
of Hammond (1979), which rarely has an equilibrium. (See Groves and Led-
yard 1977, 1980.) Fair-efficient allocations exist unless (1/N) qy > pw; for
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some i, that is, unless the proportional tax bankrupts some agent. The sur-
prising result is Theorem 5.2.

THEOREM 5.2. In public goods environments with an atomless continuum
of agents, the fair-efficient mechanism is an efficient, dominant-strat-
egy mechanism.

PROOF. See Appendix to Section 5 for a sketch of the proof.

It would appear that, in contintum economies as in finite economies,
there is fundamentally no difference between private and public goods en-
vironments with respect to the possibility of the design of efficient, domi-
nant-strategy mechanisms. However, as noted by Hammond (1979) and Downs
(1957), the reason truth is dominant in the fair-efficient mechanism is that
changes in d have absolutely no effect on the level of public goods received
or on the level of taxes paid. Thus, any d’ such that x(v,d) = x(v,d') is a
dominant strategy. There is no incentive either to lie or to tell the truth.
Muench and Walker (1979) also noted this phenomenon for some versions
of the quadratic mechanism. In the private goods case this is not true for
the competitive mechanism. Thus there appears to be a subtle difference in
the type of result, in spite of the superficial similarities. This difference is
most easily highlighted by considering large finite economies.

5.2. Large Finite Economies

To discover what happens in large finite economies, we consider limiting
results as the number of agents approaches infinity. We already know that
it is impossible to design efficient, dominant-strategy mechanisms in finite
economies, even if they are large. However, if there is continuity as the
number of agents grows, then the existence of efficient, dominant-strategy
mechanisms in large economies should give us some hope that in large finite
economies we can have mechanisms that are “almost” efficient, dominant-
strategy mechanisms.

5.2.1. Limiting Incentive Compatability

Two papers have addressed this issue by considering the potential gain
from misrepresentation. In the first, by Roberts and Postlewaite (1976), a
definition of “almost” dominant strategy is given for private goods econ-
omies. In particular, they defined a mechanism to be limiting incentive-
compatible if for any € > 0, and any utility function representing an agent’s
preferences, in sufficiently large economies the gain from using some char-
acteristic other than the truth is less than .

Endowing the set of measures that have compact support on D, {v}, with
the topology of weak convergence, we can talk about large finite economies
that are “close” to atomless environments. Letting C(v) be the set of com-
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petitive equilibrium prices for the environment v, we get the following major
result:

THEOREM 5.3 (Roberts and Postlewaite 1976). On the class of classical
private goods environments, let v, — v' where V' is an atomless mea-
sure. If C(v) is continuous'® at v', then for any € > 0 and any util-
ity function there is a k* such that k > k* implies that u(h(vy),d) >
u(h(v,/d'),d) — € for any agent d in v;. (That is, the gains from mis-
representation are arbitrarily small.)

PROOF. See Roberts and Postlewaite (1976).

In the other paper to consider large environments, Roberts (1976) adapted
the previous definition of limiting incentive compatibility to public goods
environments and looked at the performance of several general classes of
mechanisms. We present one of the several impossibility results contained
in this paper.

THEOREM 5.4 (Roberts 1976). Let v, be an expanding sequence of public
goods environments (the number of agents increases) with one private
good,I9 and let h(v) = (x(v,d),y(v)) be an allocation mechanism such
that h is individually rational (i.e., u(h(v),d) = u(w(d),0)), such that
y(v) is uniformly continuous on the sequence {v,}, and such that y(vy)
— y*. If x(v,d) = x* < w, then h cannot be limiting incentive com-
patible for the sequence {vi.

prOOE. The proof of this theorem consists of showing that the misrepre-
sentation of acting as if one receives no utility from the public good yields
a gain that is bounded away from zero unless the agent’s implicit tax goes
to zero (for details, see Roberts 1976, p. 367).

This theorem would seem to point to a key difference between private
and public goods. However, the fair-efficient mechanism we used earlier in
the limit economy is not individually rational and, therefore, is not subject
to the conclusion of this theorem. In fact it can be shown that that mech-
anism is limiting incentive-compatible.

THEOREM 5.5. Consider the class of environments characterized by quasi-
linear preferences, one private and one public good, and crowding in
the production of the public good so that the optimal quantity of the
public good is bounded above by y* finite. Let v, be an expanding
sequence of public goods environments in this class. There exists an
allocation mechanism for this class of environments that is limiting
incentive-compatible for the sequence {vi}.

pROOF. See Appendix to Section 5 for a sketch of the proof.

For most atomless v', C(v) is continuous at v'.
“There does not seem to be anything special about one private good.

INCENTIVE COMPATIBILITY 99

It would seem at this point that there is absolutely no difference, from a
mechanism design point of view, between public and private goods, since
all five of the following facts apply to both classical private goods environ-
ments and classical public goods environments.

(1) In finite environments there exists at least one dominant strategy mech-
anism.

(2) In finite environments there do not exist efficient, dominant-strategy
mechanisms if the class of environments is large enough.

(3) In finite environments there exist efficient Nash mechanisms.

(4) In atomless environments there exists at least one efficient, dominant-
strategy mechanism.

(5) There exists at least one mechanism that is limiting incentive-compati-
ble, unless individual rationality is required.

What then, if anything, accounts for the conventional wisdom that the
incentives in allocating private goods are fundamentally different from those
in allocating public goods? Consider an alternative approach.

5.2.2 Nash-Equilibrium Behavior

We have seen? that in large finite private economies there are mecha-
nisms such that almost all agents have a small incentive to free ride, when
all others act according to their true preferences. It is possible, however,
that although each misrepresents only a little, the combined effect is large
and the outcome is still inefficient. Therefore, rather than assume that all
but one agent behave truthfully, as is done in the definition of limiting in-
centive-compatibility, let us consider what occurs if all misrepresent. Since
there will be no dominant strategies, we will assume Nash-equilibrium be-
havior.

The intuition that the combined effects can overwhelm limiting incentive-
compatibility is definitely correct. This is most easily seen by considering
the competitive mechanism in the Edgeworth box environment. We know
from the work of Hurwicz (1978), and the extensions of Otanyi and Sicilian
(1982), and Thomson (1984) that the set of Nash-equilibrium allocations for
the competitive mechanism in the two-person pure exchange economy con-
sists of all allocations in the (lens-shaped) area within the agents’ true offer
curves. Pick any one of these inefficient allocations and replicate the en-
vironment. In each replica, it is possible to construct (misrepresented) offer
curves for each agent such that the originally chosen allocation remains a

®This section was improved immensely by Andrew Postlewaite, who convinced us that the
material in the second paragraph was correct.
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Nash-equilibrium allocation. Large numbers seem to eliminate no inefficient
alternatives when multiple agents can misrepresent.

On the other hand, it is possible to prove a variation of the Roberts-
Postlewaite (1976) theorem and state conditions such that Nash equilibria
of the competitive mechanism are almost truthful (and, therefore, almost
efficient) in large economies. If one replicates an Edgeworth box environ-
ment and selects, for each replica, a Nash equilibrium, and if the mis-
represented aggregate demand functions associated with these equilibria
converge to an aggregate demand function whose slope is nonzero at the
Walrasian-equilibrium price, and if the environments are continuous enough,
then it must be true that the Nash-equilibrium misrepresented demand func-
tion of each consumer approaches the truthful demand function and, there-
fore, the Nash-equilibrium allocations approach an efficient allocation. A
sketch of the proof is contained in Appendix 5 (Theorem 5.6).

Although the preceding two paragraphs may seem contradictory, the dif-
ference is easily explained. For Nash-equilibria preferences to remain mis-
representations as the economy grows, it must be true that the slope of the
reported aggregate demand function at the Walrasian-equilibrium price is
converging to zero. Only in this situation can each agent have an effect on
price by reporting a (false) quantity demanded, since the change in price
due to a change in quantity is infinite (in the limit). There are, therefore,
two kinds of Nash Equilibria in large economies for the Walrasian mecha-
nism: (1) misrepresented preferences with zero-sloped demand functions
yielding inefficient allocations and (2) almost truthful preferences with non-
zero-sloped demand functions yielding almost efficient allocations. Fortu-
nately, the former are not very robust, whereas the latter are. To see this
intuitively, suppose that each agent may make a very small error in reporting
his equilibrium strategy.”' The reported aggregate demand function will, for
most of the aggregate errors, have a nonzero slope at the equilibrium price.
Therefore, if the economy is very large, each agent will lose very little by
reporting the truth. (It is only if the demand function has a zero slope that
the agents could gain by misrepresenting.) For any error that is independent
of the size of the economy, there is a large enough economy such that any
best replay will be close to the truth. Combining these facts yields Theorem
5.6.

'What follows may seem related to concepts of trembling-hand equilibria, but it is not. In
each replica, all Nash are also (trembling hand) perfect; standard trembles do not eliminate
any of the inefficient equilibria. However, if one chooses the tremble (on a per person basis)
independent of the size of the economy, then, for large enough economies, the inefficient
equilibria disappear.
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THEOREM 5.6. In classical private goods environments, with enough con-
tinuity and with some (arbitrarily small) uncertainty in reporting, there
is a (direct revelation) mechanism that is almost an efficient dominant-
strategy mechanism if the economy is large enough.

PROOE. A mechanism is almost a dominant-strategy mechanism if there
is a strategy for each i that is independent of the others’ strategy choices
and that yields almost as much utility as the best replay. For the competitive
mechanism in very large environments this “almost dominant strategy” is
the true characteristic. Therefore, the allocations will be almost efficient.

In public goods environments this theorem does not seem to hold. Con-
sider the fair-efficient mechanism presented in Section 5.1. For each agent,
d, let y'(d) solve max(wrt y) u(y.d) — f(y), and then let @* solve max(wrt d)
y'(@d). Ify'd) < y'(d*), then it will be in d’s interest to send the misrepre-
sentation, d’ where u(y,d’) = O for all y. It will be in d*’s interest to send
the misrepresentation, d'* where u(y,d'*) = u(y,d*) for all y, if all others
send d’. Thus the Nash-equilibrium outcome will be y = y'(d*) and each d
will play f(y'(d*)). As the economy grows, these remain the appropriate
misrepresentations, and the outcomes and the allocations remain bounded
away from efficiency. If we consider the limit of these environments as N
grows, we see that although the gain from these “free riding” strategies goes
to zero, there is no loss from following them even in the limit. That is, even
in the limit environment with an infinite number of agents, these are “rea-
sonable” strategies; nothing is lost by following them; they are optimal. In
fact, they are almost dominant. (In the limit economy, since no agent can
change either taxes or the level of public good, almost all misrepresentations
are as good as the truth.)

The above behavior, as one passes to the continuum, does not occur,
however, in all allocation mechanisms for public goods. In a recent paper,
Muench (1983, 1) examines the implications of manipulative Nash behavior
in large finite economies for the quadratic mechanism of Groves and Led-
yard. He shows that, as the environment is replicated, there are local ma-
nipulative Nash equilibria of the symmetric Nash equilibrium arbitrarily close
to Pareto-efficient allocations and the allocations in the limit involve divid-
ing the cost of the public good equally among all consumers. In our lan-
guage, the manipulative Nash-equilibrium allocations converge to the fair-
efficient allocations as the economy is successively replicated. As we pointed
out in Section 4, considering manipulative Nash behavior in a mechanism
h(m) is equivalent to considering Nash behavior in the direct revelation
mechanism A{b"(e;h)] = H(e). Thus Muench has, in effect, shown that there
is a mechanism, H, whose Nash-equilibrium allocations are approximately
efficient in large finite replica economies, with enough continuity.
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It would seem that we now have a result for public goods environments
like Theorem 5.5 above. But Muench also proves that, in the limit, the Nash
equilibria of H(e) involve misrepresentations. This should be evident since
the Nash-equilibrium allocations of the quadratic mechanism, h, are not fair,
even in the limit. Thus, convergence of the Nash allocations of H to fair
efficient allocations implies that the Nash equilibria of H, b(e:H), do not
converge to e. Therefore, they cannot be approximate dominant strategies.

To summarize, and also to provide a contrast with the private goods en-
vironments, we state two propositions.

THEOREM 5.7. In classical public goods environments, (a) there is a (di-
rect revelation) mechanism whose Nash equilibria are almost dominant
strategies if the economy is large enough, and (b) there is a (direct
revelation) mechanism whose Nash equilibria are almost efficient if
the economy is large enough.

PROOF. Summarizes above discussion.

CONJECTURE 5.8. In classical public goods environments, there is no
mechanism that, in large economies, is “almost” an efficient, domi-
nant strategy mechanism.

If this conjecture is correct, it is the first fact that differentiates private

goods environments from public goods environments.

It should be noted that both direct-revelation mechanisms—the compet-
itive mechanism and the manipulative Nash version of the quadratic mech-
anism—do not produce efficient allocations in finite environments; only in
a limiting sense are they efficient. Yet we know from above that there are
other mechanisms that are efficient Nash in all finite environments. Can we
find one that, in the limit, is almost an efficient dominant-strategy mecha-
nism? For now our answer is that we do not know. For the mechanisms like
those in Section 4, the message space is smaller than the space of classical
environments. It thus seems unlikely to us that dominant strategies exist
even in the limit.

We can carry this analysis a step further. In private goods economies,
the Nash-efficient mechanisms discussed in Section 4 have the additional
property that they select Walrasian allocations. That is, h[b (e;h)] T W(e).
We know that W(:) is simply the outcome function of the competitive pro-
cess which is almost a dominant-strategy mechanism in large environments.
Therefore, as the private goods environment grows larger, the manipulative
Nash equilibria of those Nash-efficient mechanisms converge to a dominant
strategy, the true e;.

COROLLARY 5.9. In large finite private goods environments there are Nash-
efficient mechanisms with the property that truth is almost a manip-
ulative Nash equilibrium. That is, it is almost a dominant strategy to
employ Nash behavior (according to one’s true characteristics) in one’s
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message responses, if everyone else employs Nash behavior (according
to some arbitrary characteristic).

A similar result does not seem to be valid in public goods environments.
From our work and from that of Muench (1983) and Muench and Walker
(1979, 1983), we know that the quadratic mechanism is an efficient Nash
mechanism that in the limit is an efficient, but not a dominant-strategy,
mechanism. (The manipulative Nash equilibria are not efficient in finite
economies but are in the limit.) However, the manipulative Nash equilibria
converge neither to the true characteristics nor to a dominant strategy. Thus
an analogous result to that of Corollary 5.8 will not hold for the quadratic
mechanism. Almost the same conclusions can be reached for any mechanism
whose Nash-equilibrium allocations are Lindahl. The only difference is that
the manipulative Nash equilibria converge to a dominant strategy (which is
to act as if one gets no utility from public goods) but are never efficient
even in the limit.

CONJECTURE 5.10. In public goods environments, there are no mecha-
nisms with the property that, in large economies, truthful Nash be-
havior is almost a dominant strategy, or truth is almost a manipulative
Nash equilibrium.

Again we have a subtle but important distinction between private and

public goods environments if Conjectures 5.8 and 5.10 can be verified. This
work remains to be done.

5.3. Summary

Combining the results in the previous section, we can summarize the state
of knowledge concerning the possibilities for the design of efficient, incen-
tive-sensitive mechanisms in “large” economies as follows:
THEOREM 5.11
(a) In classical environments (both public and private) with a contin-
uwum of agents, there exist nonparametric, efficient, dominant-
strategy mechanisms (Section 5.1).
(b) In classical environments (both public and private), there are
mechanisms that are efficient and limiting incentive compatible,
if individual rationality is not required22 (Section 5.2.1).
(¢) In classical private goods environments, with enough continuity,
there exists a mechanism that is “almost” an efficient, dominant-

2This has been proven in the case of environments with public goods only and quasi-linear
preferences. The more general statement is conjecture at this point.
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strategy mechanism if the economy is “large enough” (Section

5.2.2).
(d) In classical public goods environments, with enough continuity,

there exists a mechanism whose Nash-equilibrium allocations are
“almost™ efficient if the economy is “large enough” and there ex-
ists a mechanism whose Nash-equilibrium strategies are “almost”
dominant strategies if the economy is “large enough.” The two
known mechanisms are not the same (Section 5.2.2).

(e) (Conjecture) In classical public goods environments, with enough
continuity, there do not exist mechanisms that are “almost” effi-
cient, dominant-strategy mechanisms even in “very large” econ-
omies (Section 5.2.2).

(f) In classical private goods environments, there are efficient Nash
mechanisms for which truth is “almost” a manipulative Nash equi-
librium if the economy is “large enough” (Section 5.2.2).

(g) (Conjecture) In classical public goods environments, there are no
efficient Nash mechanisms such that truth is “almost” a manipu-
lative Nash equilibrium even if the economy is “large enough”
(Section 5.22). '

With these results, we close our survey.

Appendix: 5: Sketches of Proofs

We include in this appendix sketches of proofs of a few of the theorems of
Section 5.

Sketch of Proof of Theorem 5.1

The environment is modeled as a measure on a set of possible charac-
teristics. Let D be a set of characteristics—endowments and preferences—
and let v be a measure on that set such that v(D) = 1. We say that v is
atomless if v({d}) = O for all d € D. [If v is a finite environment, represented
by, say, e = (e,,...,ey), then v({d}) = 1/N if d = ¢, for some i and v({d})
= 0 otherwise.]

Given an environment v, let v/(d,d’) be the same environment with d
replaced by d'. If v is atomless, then for the competitive mechanism the set
of equilibrium prices C(v) = C(v/(d,d")). Thus if some atomless agent re-
ports d' instead of d, there is no effect on the equilibrium price. It follows
easily that an agent’s best response is the true characteristic no matter what
v is. Thus the competitive mechanism is a truth-dominant mechanism in
classical private goods environments with a nonatomistic measure of agents.
That the competitive mechanism is efficient is already known.
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Sketch of Proof of Theorem 5.2

As in the private goods model, we let v be the measure on characteristics
that describes the environment. The Fair-Efficient mechanism h(v) selects a
public goods level, y(v), and a net trade in private goods for each agent,
x(v,d), in such a way that there are prices p(v) and g(v) such that
(1) if z2(v) = [x(v,d)dv, then (y(v),z(v)) solves

max p(v)z + q(v)y subject to (z,y) € Y,
(2) x(v.d) solves max u(y(v),x;d) subject to

1
pvix + ;] q(y(v) = p(vw(d) + m(v,d), where
Jm@v,d)dv = p(»)z(v) + q(v)y(v), and fdv = N,

, f {au[z(v),w +x(v,d),d]/ay} & = o)
( sulzoyw + xvdy.difon) O T

It remains to be shown that this mechanism, h(v), is an efficient, dom-
inant-strategy mechanism if v is atomless. It is obviously efficient if truth
is a dominant strategy. To see that it is a dominant-strategy mechanism,
consider how each of the above three relations change as one atomless agent
replaces d with d’. First, none of z(v), p(v), g(v), or y(v) change. Thus the
only change that the agent can effect is in h(v,d), but it is then optimal to
send the true d’. Therefore, sending the true d is a dominant response.

Sketch of Proof of Theorem 5.5

To understand the proof, consider a simplified set of environments: those
with quasi-linear prefences, one private and one public good, and crowding
in production so that the optimal quantity of the public good y, converges
to a finite y* as the number of agents k becomes large.

Let N be the number of agents in the economy. Assume that g(y) is the
amount of private good needed to produce y, with g(y) = Nf(y), and g'(y)
= Nf'(y). In this case the fair-efficient mechanism introduced earlier is given
by: x(v,d) = —(1/N) g(y(»)) = —f(y), and y(v) solves

f WD) 4y = g'(3) = NFO. *)

ay

To see that this is indeed limiting incentive compatible, assume that v is
finite and consider an agent’s decision as to which characteristic to report.
If d reports d’, then y = y(v/d') and x = x(v/d',d") = —(1/N) gly(v/d")
= —f'(y(v/d")). Therefore, this agent should select his best y' and then
choose d' such that y(v/d') = y': By best we mean that y’ which maximizes
u(y,d) — f'(y). As N becomes large y' does not change, because of the
crowding assumption. Given y’, let us see how to calculate d'. Remember




106 GROVES AND LEDYARD

that y(v) solves (*). Suppose that y' < y(v) and that one cannot claim
that y is a public bad. Then the most we can gain by misrepresenting is by
sending d’ such that u(y,d’) = O for all y; that is, to claim to have no
interest in the public good. The new public good level y(v/d') solves
Jou(y,d)/dy dv — v(d) du(y,d)/dy = g(y). It is easy to see that as N grows
y(v/d")— y(v), since v(d) — 0. It follows that the incentive to misrepresent,
u(yw/d')d) = u(y).d) — [f(y(v/d")) = f(»(v))], goes to 0. Basically,
as N grows large, all agents’ ability to manipulate y grows small and there-
fore the gain grows small. Thus, this mechanism is limiting incentive com-
patible.

Sketch of Proof of Theorem 5.6

Let x(p,e) solve max u(x,e) subject to px = pw. (Assume w,...wy are
known.) Let e* = (e¥,...,e¥) denote true preferences. Let E = E; X ... X
Ey be such that (1) u € C*, (2) there exists a unique competitive equilibrium
price system, and (3) dZx(p,e;)/dp < O at that equilibrium. At the k" rep-
licate misrepresentation Nash equilibrium,

(1) " is the equilibrium where if two agents, i and j, are the same type,
then e = €Y.

(2) p* solves Zx(p,e¥) — w; = 0.

(3) for all i, V. u(v,e¥)[k 2, x,(p*,e"*) — x,(p". e pt, =0

where

v=—k D x(phe™) + x(phe) = x(phe).
h

From (2),
—ax{ p*,e")/oe
R I P
P k 2 ax,(p",e™)
h ap
Let
" — & where ¢é # e* = (true characteristic) and p*— p.
From (3),

Therefore, if

then
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0.

ax(p.é
V, u(x(p,é),e) X x(p.é) _
de;

But this will be true if and only if x(f,e}) = x(p,é,) for all i. Therefore,
p = p* and x; = x;(p*,e).
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